
San Jose (CA)| September 23, 2010
Gernot Ziegler, Devtech-Compute, NVIDIA UK
Allan Rasmusson, University of Aarhus (Denmark)

Efficient Volume Segmentation
on the GPU

Agenda

 Introduction / Problem Task

— Input and Expected Output, Connectivity

 Algorithm

— Label Setup and Label Propagation

— Acceleration concepts (Links, Master/Slave)

 Implementation

— Algorithm mapping to CUDA C

— Tradeoff comparison for different strategies

 Results

 Conclusion

 Example Input

— 2D RGB image

— Connectivity Criterion:

Equal colors, 8-connectivity

Introduction / Problem Task

 Input

— 2D array / 3D array of

data (typical image/

volume data)

— Connectivity Criterion

(when are two elements

connected?)

Introduction / Problem Task

 Output

— Uniquely labelled regions:

2D Array / 3D Array

with all connected regions

having the same "label"

(usually a 32bit integer value)

 Example

— 2D array of labels

LEGEND

Labels: White outline

Connectivity Criterion

When are neighboring cells "connected", become a region?

 Example criterion: Equal RGB values

— Linked (= 1): , symbolized as:

— Not linked (= 0):

 More useful criterions for noisy input:

Color gradient thresholding

e.g. Sum(abs(p0.rgb – p1.rgb)) < 0.1

 Others: Motion data, n-edged graphs,…

2D: 4- and 8-connectivity

 Are diagonal neighbors regarded as "connected" ?

4-connectivity:

Look at vertical and

horizontal neighbors

8-connectivity:

Also look at

Diagonal Neighbors

4- and 8-connectivity

 Affects label propagation!

 Labelling results can differ substantially:

4-connectivity labelling:

Upper and lower part

separate

8-connectivity labelling:

Upper and lower part

connected

Algorithm:
Label Setup and Propagation

Label setup

 Each cell has its own label (p.rgb = f(p.x, p.y))

 Labels are comparable in a strict linear order, e.g. L=y*width+x

 Also, (x,y) can be recovered from label - e.g. Red=X, Green=Y

Simple Label Propagation: 1-gather

 Larger labels propagate to connected cells with smaller labels

 Cells gather from their neighbours: 1-gather

 Completely data-parallel with double-buffering and gather

 Finish: When no more updates occur!

Algorithm Optimization:
Links and max-gather

Links: Motivation

 Problem of 1-gather algorithm: SLOW

(Each pass, labels propagate only one cell further)

 Can we make labels propagate faster?

 Observation: Connectivity between cells is static!

 Precompute the furthest connected cell along

each connectivity direction (e.g. x,y,z)

 Log2(width|height|depth) steps

 (Similarities with Horn's data-parallel algorithm

for prefix sum, GPU Gems 1)

Links: Precomputation Algorithm

 Initialize with local

connectivity.

 Repeatedly add cell value

that link points to.

 Example shown:

Computing furthest

connected cell

to the right

Links: Directions

 One entry for each cell and each direction

 Example: 4-connectivity links for a cross of connected cells:

Labels: Faster Gathering

 1-gather  Max-gather (via Links)

Links result in

faster label propagation

 Link Precomputation stage permits far-away label gathering

"Black" =

Irrelevant

Label

Max-gather doesn't suffice

 One might assume that 1-gather is not necessary anymore.

 BUT: there are cases where max-gather doesn't fill all cells!

Links Data:

Cross of connected cells
Green Label is largest -

Attempted max-gathering

Label result (incomplete)

Black label color =

Smaller/Irrelevant

Label

Max-gather doesn't suffice

 1-gather is still necessary to fill in the unlabelled holes!

Green Label is largest -

Attempted 1-gathering

Label result (complete)

Algorithm Optimization:
Master/Slave

Master cells

 In each region, one cell keeps its original label

 All other cells: Their label originates from this one cell

 Thus, each labelled region has a master cell

Label Init: Lower/Right

values are larger

Labelled result

M = master cell

Label Init: Lower/Right

values are larger

Master cells: Label propagation

 If master cell changes label, all slave cells can change label

 Hence: Always gather current label from master cell!

 Purpose: Commonly labelled regions flip ―at once‖.

Pass 0: Three regions:

Masters Mn, Slaves Sn
Pass 1: Region M0

"captures" Masters M1, M2

Pass 2: Master cell lookup

makes S0's and S1's flip!

Pseudo-Code: Simple Algorithm

// Step I - Label Init

for (all pixels) {

pixel.label = encodeLabel(pixel.x, pixel.y);

}

// Step II - Propagate Labels

while (AnyLabelChanges) {

for (all pixels) {

for (all directions) {

neighborLabel = gather(neighbor, direction);

pixel.label = max(pixel.label, neighborLabel);

}

}

}

Pseudo-Code: Optimized Algorithm

// Step I - Label Init

for (all pixels)

pixel.label = encodeLabel(pixel.x, pixel.y);

// Precalculate links

precomputeLinks();

// Step II - Propagate Labels

while (AnyLabelChanges) {

for (all pixels) {

for (all directions) {

// Use max-gather

neighborLabel1 = gather(neighbor, direction);

neighborLabelMax = gather(neighbor, pixel.maxgather(direction));

pixel.label = max(pixel.label, neighborLabel1, neighborLabelMax);

// Master/Slave

if (pixel.label != pixel.originalLabel) {

masterRef = decodeLabel(pixel.label);

pixel.label = max(pixel.label, masterRef.label); }}}}

Implementation

Implementation: Image Storage

 Input: RGBA, 8 bit

Implementation: Label Storage

 32 bit for x and y

 Max width: 65535

 Max height: 65535

 Label ordering:

upper left <<

lower right

 L=x*width+y (!)

 3D version:

8/10 bit for x, y and z

Implementation: Links Storage

 All directions stored

in global memory

 Line-interleaving

ensures memory

coalescing during

links precomputation

& label propagation

Implementation: Execution Configuration

 Block Size =

(multiple of 32, 1)

 Extra horizontal block

for odd-width images

 Exact number of

vertical blocks

 Thread config fits

image, label and links

processing

Results: Simple 1-gather

 Only 1-gather

 Simple and works,

but: SLOW!

 Interesting:

"Tug-of-war" in lower part

of image, until a much

larger label from right

(large x component)

comes along

Results: Master/Slave Principle

 Already-connected

regions switch at once,

see e.g. video's ending

Results: Links & Master/Slave

 Pre-linked regions

switch a lot faster

Example of 8-connectivity

 8-connectivity:

Links in 8 directions are

generated and used.

Results: Input Images

 Used in CUDA TopCoder challenge

100by300

1Kby768
4Kby4K

Impact of Links & max-gather

Impact of Master/Slave

Extension to 3D

 Extend algorithm to 3D

(cells = voxels)

 Choice of connectivity scheme

 Labels are now a function of

x,y,z

 Labels can be converted to

and from 3D coordinates

 8bit x,y,z -> RGB 8bit

3D Connectivity

 Choice of connectivity scheme from three building blocks:

Results: 3D volume (256x256x100)

1-Gather &

Master/Slave

Results: 3D volume (256x256x100)
Max-Gather

Results: Typical execution times

 Fast enough for

video processing!

 3D volume of

— 256x256x100: 1500 ms

 Fast enough for interactive

connectivity experiments

 Shmem not yet utilized!

Image Kernel Gather Time (ms)

100by300 CU_4CON 32 4.04

100by300 CU_8CON 64 2.44

1Kby768 CU_4CON 64 7.48

1Kby768 CU_8CON 128 10.78

4Kby4K CU_4CON 256 343.84

4Kby4K CU_8CON 128 356.43

ctHead CU_6CON_3D 128 1499.43

Run on Tesla C2050, includes

GPU memory transfers

Summary

 Links Precomputation from static connectivity is highly

beneficial for label propagation.

— Surprise: Less than maximal gather lengths are just as usable!

 Completely data-parallel algorithm

(parallelization over all pixels, no atomic operations)

 Current implementation (gmem-based)

already has real-time 2D performance

Future Work

 Efficient usage of shared memory (prototypes exist)

 Label List generation (based on data compaction)

 Distance Field computation might also benefit from Links

Thank you !

Additional Material

Label lists (Sketch)

 Q: How can I extract a list of all discovered regions?

 Step 1: Each region has one master cell.

Isolate all cells that have retained their own label!

 Step 2: With list of master cells and their labels, each

region's cells can be extracted by filtering for that label.

 Both steps can be solved by Data Compaction!

(e.g. HistoPyramids, or Scan)

 Future Work!

