Efficient Volume Segmentation
on the GPU

San Jose (CA)| September 23, 2010
Gernot Ziegler, Devtech-Compute, NVIDIA UK
Allan Rasmusson, University of Aarhus (Denmark)

-’

eresenrener o MVIDIA.

Agenda

» [ntroduction / Problem Task

— Input and Expected Output, Connectivity
= Algorithm

— Label Setup and Label Propagation

— Acceleration concepts (Links, Master/Slave)
* Implementation

— Algorithm mapping to CUDA C
— Tradeoff comparison for different strategies

= Results
= Conclusion

PRESENTED BY @ NVIDIA.

Introduction / Problem Task

= Input = Example Input

— 2D array / 3D array of — 2D RGB image
data (typical image/
volume data)

— Connectivity Criterion
(when are two elements
connected?)

— Connectivity Criterion:

Equal colors, 8-connectivity
rresenreosy <24 MVIDIA.,

Introduction / Problem Task

= Qutput = Example

— Uniquely labelled regions: — 2D array of labels
2D Array / 3D Array
with all connected regions
having the same "“label”
(usually a 32bit integer value)

LEGEND

Labels: White outline
eresenenay o8 MVIDIA.,

Connectivity Criterion

* When are neighboring cells "connected”, become a region?

= Example criterion: Equal RGB values

— Linked (= 1): .. , symbolized as: ==
— Not linked (= 0): ..

= More useful criterions for noisy input:
Color gradient thresholding
e.g. Sum(abs(p0.rgb - p1.rgb)) < 0.1

= Others: Motion data, n-edged graphs,...

PRESENTED BY @ n\"DlA.

2D: 4- and 8-connectivity

» Are diagonal neighbors regarded as "connected” ?

4-connectivity: 8-connectivity:
Look at vertical and Also look at
horizontal neighbors Diagonal Neighbors

PRESENTED BY @Z nVIDlA.

4- and 8-connectivity

= Affects label propagation!
» Labelling results can differ substantially:

EMIE 8-connectivity labelling:

.E. 4-connectivity labelling:
sl Upper and lower part
separate

Eesed Upper and lower part

¥ & v] connected

Algorithm:
Label Setup and Propagation

eresenenay o8 MVIDIA.,

Label setup

= Each cell has its own label (p.rgb = f(p.x, p.y))
» Labels are comparable in a strict linear order, e.g. L=y*width+x

= Also, (x,y) can be recovered from label - e.g. Red=X, Green=Y

eresenenay o8 MVIDIA.,

Simple Label Propagation: 1-gather

= Larger labels propagate to connected cells with smaller labels
= Cells gather from their neighbours: 1-gather
= Completely data-parallel with double-buffering and gather

» Finish: When no more updates occur! SANVIDIA.

Algorithm Optimization:
Links and max-gather

eresenenay o8 MVIDIA.,

Links: Motivation

* Problem of 1-gather algorithm: SLOW
(Each pass, labels propagate only one cell further)

= Can we make labels propagate faster?
= Observation: Connectivity between cells is static!

» Precompute the furthest connected cell along
each connectivity direction (e.g. x,y,z)

» Log2(width | height | depth) steps

= (Similarities with Horn's data-parallel algorithm
for prefix sum, GPU Gems 1)

EEEEEEEEEEE <A NVIDIA.

Links: Precomputation Algorithm

= |[nitialize with local
connectivity.

» Repeatedly add cell value mo 0‘ Oo
that link points to.
= Example shown: + gty y+
Computing furthest 2 2 1 0 0\ 1 0\
connected cell
to the right VAN m
3210010

PRESENTED BY @ NVIDIA.

Links: Directions

* One entry for each cell and each direction
» Example: 4-connectivity links for a cross of connected cells:

0
O O
2
1
O 21 12 0
1
2
0 0
0

eresevrener 8 MVIDIA.,

Labels: Faster Gathering

» Link Precomputation stage permits far-away label gathering

= 1-gather = Max-gather (via Links)

Nl

"Black” = /”
Irrelevant
Label

Links result in
faster label propagation

eresenenay o8 MVIDIA.,

Max-gather doesn’t suffice

= One might assume that 1-gather is not necessary anymore.
» BUT: there are cases where max-gather doesn't fill all cells!

Black label color =

0 0 0 N Smaller/Irrelevant
2 2 Label
1

0 21 12 0
0 1 0

2

0 O
0

Links Data: Green Label is largest - Label result (incomplete)

Cross of connected cells Attempted max-gathering presenteo sy <24 MVIDIA.

Max-gather doesn't suffice

= 1-gather is still necessary to fill in the unlabelled holes!

Green Label is largest - Label result (complete)

Attempted 1-gathering SANVIDIA

Algorithm Optimization:
Master/Slave

eresenenay o8 MVIDIA.,

Master cells

* [n each region, one cell keeps its original label
= All other cells: Their label originates from this one cell
* Thus, each labelled region has a master cell

Label Init: Lower/Right Label Init: Lower/Right Labelled result
values are larger values are larger M = master cell

Master cells: Label propagation

S0 SO SO

B so so [Jjf so

S0 SO Mo S0 SO SO MO

Pass O: Three regions: Pass 1: Region MO
Masters Mn, Slaves Sn "captures" Masters M1, M2

= [f master cell changes label, all slave cells can change label
» Hence: Always gather current label from master cell!
= Purpose: Commonly labelled regions flip “at once”.

S0 SO ISO SO

S0 SO SO SO SO SO SO
S0 SO SO SO SO SO

S0 SO SO S0 SO SO MO

Pass 2: Master cell lookup
makes SO's and S1's flip!

Pseudo-Code: Simple Algorithm

/[Step | - Label Init
for (all pixels) {
pixel.label = encodeLabel(pixel.x, pixel.y);

}

/[Step Il - Propagate Labels
while (AnyLabelChanges) {
for (all pixels) {
for (all directions) {
neighborLabel = gather(neighbor, direction);
pixel.label = max(pixel.label, neighborLabel);

Pseudo-Code: Optimized Algorithm

I/ Step | - Label Init
for (all pixels)
pixel.label = encodelLabel(pixel.x, pixel.y);
Il Precalculate links
precomputeLinks();
I/l Step Il - Propagate Labels
while (AnyLabelChanges) {
for (all pixels) {
for (all directions) {
Il Use max-gather
neighborLabell = gather(neighbor, direction);
neighborLabelMax = gather(neighbor, pixel.maxgather(direction));
pixel.label = max(pixel.label, neighborLabell, neighborLabelMax);
I/l Master/Slave
if (pixel.label != pixel.originalLabel) {
masterRef = decodeLabel(pixel.label);
pixel.label = max(pixel.label, masterRef.label); }}}}

eresenenay o8 MVIDIA.,

-
O
HE
©
wid
C
)
=
S
=)
E

Implementation: Image Storage
8 bit
A|lB|G|R = [nput: RGBA, 8 bit

32 bi

Height

Width presentensy €8 MVIDIA.

Implementation: Label Storage

16 bit

K

X

Y

N\

32 bit”

Height

= 32 bit for x and y
= Max width: 65535
= Max height: 65535

= | abel ordering:
upper left <<
lower right

» [=x*width+y (!)

= 3D version:
8/10 bit for x, y and z

PRESENTED BY @ NVIDIA.

Implementation: Links Storage

) 32 bit)‘
Dir 0 = All directions stored
in global memory
Dir 1 . . .
» Line-interleaving
\ 5 / ensures memory
Dir n coalescing during
] links precomputation

& label propagation

Heightx n

Width sresentensr 4 MVIDIA.

Implementation: Execution Configuration

= Block Size =
(multiple of 32, 1)

= Extra horizontal block
for odd-width images

= Exact number of
vertical blocks

» Thread config fits
image, label and links
processing

PRESENTED BY @ NVIDIA.

Results: Slmple 1- gather

FE R N 5|
L'ULI----

l']
l I

n-::_- | ae- = = Only 1-gather

-'.-: '

!-IUI
_I
e
©

r
T N N im

{
. mm am ,
- m aw w w0 Em Em

o mi='s= = Simple and works,

(il
[HEE BN BN

SES. sSnIos ===~ but: SLOW!

BN BN) PN DN NN BN BN SN EE E
ﬂ":;'"»'-:--l

s e

e p g " |[nteresting:
i "Tug-of-war" in lower part
: of image, until a much
larger label from right
(large x component)

comes along

lllll
. l
. lll
e
]
mEEEN
LB m
N
o .
NN NN

[
= I NN NN BN NN NN NN NN N | PRESENTED BY @n\"D'A.

1(-] 3l = I] M US B S g C

Results: Master/Slave Principle

= = L
o e e e e MOde Tgde

Y
m
'
) |
[

2 U iU IN=RMS -.-.-

SN NN BN BN NN RN N : .
o momoE N SN N NN i

IN BN BN BN BN EE BN E ._

‘m W - = :

7|
||
|
]
||
@ |
o .
0
|

» Already-connected
== - o regions switch at once,

.f-- H Em = --.

= e -=== see e.g. video's ending
= i =

@ A

{ i

e
é-ll
HIIE

i N

%]

N ﬁI-
H BE = ---
Il BN BN =

PRESENTED BY @ NVIDIA.

Results: Links & Master/Slave

S . | W R R |

2 i .
LU EONERS o _ ey ieWVMode. Tmad
8] N] 3

. -.-. . -I-ﬁ-

e s e = = Pre-linked regions

{8 |
| Tl |
|
il
|
B

||

m .

||

[

[}
|

54
am
llﬂll
ﬂl
@

s
e
I |

7
HE BN =

.

PRESENTED BY @ NVIDIA.

Example of 8-connectivity

MizeMafraniea0)

3

I O,

a \}

= 8-connectivity:
Links in 8 directions are
generated and used.

B m

ik
a
= aII

I |
~ E Il N BN BN Am Bm =
£
. il °E BN B Bm Bm =
3R [E3
H BN =om B HE BN
H Il BN BN N Bm .
A R N BN BN Bl
]
Il Il N BN BE .
|

0

H E N8

| H B . ||
| H B E .
H N
m
B
ﬂllﬁll [
O ||
E BB BB EEENENEN
=

Z m

o

m s
A ™

(o (1 o o] MO At e PRESENTED BY @nV|D|A.

Results: Input Images

» Used in CUDA TopCoder challenge

1Kby768
4Kby4K

ereseienay o8 MVIDIA.

Impact of Links & max-gather

lterations Time
3000 100x300 —n— 25000 " 100x300 —n—
2500 1Kx768 ' 20000 | 1Kx768
@ 2000 | 4Kx4K ™ 4Kx4K
ke € 15000 |
= 1500 Py
2 1000 | E 10000
500 e 5000
0 L—— : 0 e
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Gather Lengths (pixels) Gather Lengths (pixels)

4-Conn ——

8-Conn —&— esewreosr @4 NVIDIA.

Impact of Master/Slave

Iterations Time
; . . 4500 - " . v .
6100 | 1Kx768 ' 3500 | 1Kx768
w 900 4Kx4K - 2 3000 4Kx4K
c J, E
S 400 — 2500
© . 2 2000
= 300
g 00l £ 1500
) 1000
100 e o x] 500 |
0 i = = = 0 L ,
0O 100 200 300 400 500 600 0O 100 200 300 400 500 600
Gather Lengths (pixels) Gather Lengths (pixels)

4-Conn ——

8-Conn —&— esewreosr @4 NVIDIA.

Extension to 3D

= Extend algorithm to 3D | e
(cells = voxels)

» Choice of connectivity scheme

= | abels are now a function of
X)y)z

= | abels can be converted to
and from 3D coordinates

= 8bit x,y,z -> RGB 8bit

eresenenay o8 MVIDIA.,

3D Connectivity

» Choice of connectivity scheme from three building blocks:

..................

ereseienay o8 MVIDIA.

Results: 3D volume (256x256x100)

Current frame: 0 .)
cPbhobs-poN_3SD-MS Slice 1 ViewMode: Image

1 'Gather & Input size: 640x640
MaSter/Slave Output size: 640x640

e ———— PRESENTED BY @DVIDIA
Steps: Label 0 Gather: 1 Total: 1

Results: 3D volume (256x256x100)

CU_8CON_3D-MS Slice 0 ViewMode: Image
Max-Gather

e —— PRESENTED BY @DVIDIA
Steps: Label 0 Gather: 1 Total: 1

Results: Typical execution times

» Fast enough for
video processing!

= 3D volume of
— 256x256x100: 1500 ms

= Fast enough for interactive
connectivity experiments

= Shmem not yet utilized!

Run on Tesla C2050, includes
GPU memory transfers

PRESENTED BY @ NVIDIA.

Summary

» Links Precomputation from static connectivity is highly
beneficial for label propagation.

— Surprise: Less than maximal gather lengths are just as usable!

= Completely data-parallel algorithm
(parallelization over all pixels, no atomic operations)

» Current implementation (gmem-based)
already has real-time 2D performance

PRESENTED BY @ NVIDIA.

Future Work

» Efficient usage of shared memory (prototypes exist)
» Label List generation (based on data compaction)
» Distance Field computation might also benefit from Links

PRESENTED BY @ NVIDIA.

eresenenay o8 MVIDIA.,

Thank you !

eresenenay o8 MVIDIA.,

©
-
L
P’
o
=
©
C
2
=
=
<

Label lists (Sketch)

» Q: How can | extract a list of all discovered regions?

= Step 1: Each region has one master cell.
Isolate all cells that have retained their own label!

= Step 2: With list of master cells and their labels, each
region’s cells can be extracted by filtering for that label.

= Both steps can be solved by Data Compaction!
(e.g. HistoPyramids, or Scan)

= Future Work!

EEEEEEEEEEE <A NVIDIA.

