<
=
=
®

DirectX 11 Overview

Cem Cebenoyan | 9/20/10

Outline

* Why DirectX 11?

» Direct Compute

» Tessellation

» Multithreaded Command Buffers

* Dynamic Shader Linking

» New texture compression formats

» Read-only depth, conservative oDepth, ...

PRESENTED BY @ NVIDIA.

Outline - Why DirectX 11?

= Why DirectX 11?

* Direct Compute

= Tessellation

» Multithreaded Command Buffers

= Dynamic Shader Linking

= New texture compression formats

= Read-only depth, conservative oDepth

PRESENTED BY @ NVIDIA.

DirectX 11 Overview

= Focused on high performance and GPU acceleration
» Direct3D 11 is a strict superset of 10 and 10.1
= Runs on downlevel hardware!

— Down to Direct3D 9 hardware
— Can ask for a specific D3D_FEATURE_LEVEL

= Available on Vista and Windows 7

PRESENTED BY @ NVIDIA.

Outline - DirectCompute

= Why DirectX 11?

* Direct Compute

= Tessellation

» Multithreaded Command Buffers

= Dynamic Shader Linking

= New texture compression formats

= Read-only depth, conservative oDepth, ...

PRESENTED BY @ NVIDIA.

DirectCompute

» General purpose programming on CUDA GPUs using compute
shaders

» Interoperates with Direct3D
= Uses HLSL
= Not the focus of this talk!

PRESENTED BY @ NVIDIA.

Outline - Tessellation

= Why DirectX 11?

* Direct Compute

» Tessellation

» Multithreaded Command Buffers

= Dynamic Shader Linking

= New texture compression formats

= Read-only depth, conservative oDepth, ...

PRESENTED BY @ NVIDIA.

Tessellation

= Qverview
= PN Triangles _4&.
* Terrain Tess 6 ion

.
-
[|

-Tessella / ading

© Kenneth Scott, id Software

PRESENTED BY @ NVIDIA.

© Bay Raitt
© Kenneth Scott, id Software

K\«

=)

:»

© Mike Asquith, Valve

© Kenneth Scott, id Software

Motivation - Compression

* Save memory and bandwidth
- Important bottlenecks to rendering highly
detailed surfaces

| Regular Triangle Mesh 16MB 59MB 236MB 943MB

S| D3D11 compact representation 1.9MB 7.5MB 30MB 118MB

DN X PRESENTED BY @n‘"DlA

Motivation - Scalability

= Continuous Level of Detail

eresenenay. 8 MVIDIA.

Motivation - Scalability

= View Dependent Level of Detail

eresenteney @24 MVIDIA.

Motivation - Animation & Simulation

» Perform Expensive Computations at lower frequency:
— Realistic animation: blend shapes, morph targets, etc.

PRESENTED BY @ NVIDIA.

Tessellation Pipeline
= Direct3D11 has support for

:

programmable tessellation
ertex ader

= Two new programmable shader stages:

= Hull Shader (HS)

= Domain Shader (DS)

* One fixed function stage:
» Tessellator (TS)

PRESENTED BY @ NVIDIA.

Tessellation Pipeline

* Hull Shader transforms basis functions from base
mesh to surface patches

 Tessellator produces a semi-regular tessellation
pattern for each patch

 Domain Shader evaluates surface

PRESENTED BY @ NVIDIA.

Input Assembler

= New patch primitive type
— Arbitrary vertex count (up to 32)

— No implied topology

— Only supported primitive when tessellation is
enabled

Input Assembler

Setup/Raster

Vertex Shader
Hull Shader
Tessellator

Domain Shader

Geometry Shader

eresenenay. 8 MVIDIA.

Vertex Shader

» Transforms patch control points

Input Assembler

Vertex Shader

= Usually used for:
— Animation (skinning, blend shapes)

Hull Shader

. . Tessellator
— Physics simulation
Domain Shader

Geometry Shader

= = Allows more expensive animation at a lower

Setup/Raster
frequency

PRESENTED BY @ NVIDIA.

Hull Shader (HS)

* Transforms control points to a different
basis

Input Assembler

Vertex Shader

Hull Shader

= Computes tessellation factors
Tessellator

Domain Shader

Geometry Shader

_Input Assembler
|_Vertex Shader |
| Tessellator
| Domain Shader
| Geometry shader
| Setup/Raster __

Setup/Raster

eresenenay. 8 MVIDIA.

Tessellator (TS)

» Fixed function stage, but configurable

Input Assembler

= Fully symmetric
Vertex Shader

= Domains:
— Triangle, Quad, Isolines

m Spacing: Tessellator

— Discrete, Continuous, Pow2 Domain Shader

Hull Shader

Geometry Shader

Setup/Raster

eresenenay. 8 MVIDIA.

Tessellator (TS)

Level 5 Level 5.4 Level 6.6

PRESENTED BY @ NVIDIA.

Tessellator (TS)

Left=3.5
Right=4.4
Bottom = 3.0

Top,Right = 4.5

Bottom,Left = 9.0

Inside Tess: Inside Tess: average Inside Tess:
minimum maximum

eressnreney. 24 MVIDIAL,

Domain Shader (DS)

» Evaluate surface given parametric UV

i Input Assembler
coordinates Vertex Shader

Hull Shader

= Interpolate attributes Tessellator

Domain Shader

- -, Apply displacements

Geometry Shader

il
s aser
__Hull Shader
T
T
e

Setup/Raster

eresenenay. 8 MVIDIA.

Example - PN Triangles

» Simple tessellation scheme
— Provides smoother silhouettes and better shading

= Operates directly on triangle meshes with per Input Triangles
vertex Positions and Normals

— Easily integrated into existing rendering pipelines

Output
Curved PN triangles

. . PRESENTED BY @ NVIDIA.
Vlachos et al, http://ati.amd.com/developer/curvedpntriangles.pdf

PN Triangles - Positions

» 1- Replace input triangle with a bezier patch
= Use Hull Shader

» 2- Triangulated bezier patch into a specified number of sub
triangles

= Use Tessellator and Domain Shader

= Number of Sub triangles specified by Hull Shader

PRESENTED BY @ NVIDIA.

PN Triangles - Position Control Points

Computing Position Control Points

Exterior control point
positions:

same as input vertex

positions
b3o0 = P
Bozo = P
Boos = Ps

Interior control point positions:

Weighted combinations of input
positions and normals

b

b120 -

Wij = (Pj — Pi)‘ N;
— (2Pl + Pz _W12N

210 —

= (2P2 + B —w,,N

%

)5

PRESENTED BY

<SANVIDIA.

PN Triangles - Final Positions

Evaluating tessellated positions from control
points

2 2
+b,,,3w°u +Db,,3wu

2 2
+b,,,3u°v +Db,,3wv

+ b, ,,6wuv
s SANVIDIA.

PN Triangles - Normals

= Normal at a tessellated vertex is a quadratic function of
position and normal data

w=1l—-U—V

2 2 2
N(U, V) =N, (W~ + Ng,gU° + NygV + Ny WU + NG, UV + Ny o, WV

Tessellation Pipeline

HS input:
* input control points

' Hull Shader J HS output:
 Tessellation factors

Tessellator

Tessellator Output:
* uvw coordinates

HS output:
* output control points

* Tessellation factors Domain Shader J

DS Input from Tessellator:
* uvw coordinates for one vertex

DS Output:
* one tessellated vertex

Hull Shader Stages

= Main Hull Shader

= Calculate control point data

= Invoked once per output control point

= Patch Constant Function

= Must calculate tessellation factors
» Has access to control point data calculated in the Main Hull Shader

= Executes once per patch

PRESENTED BY @ NVIDIA.

PN Triangles - Hull Shader

= Compute control point positions and normals in main Hull
Shader

» Compute tessellation factors and center location in patch
constant function

— The center location needs to average all the other control point
locations so it belongs in the patch constant function

PRESENTED BY @ NVIDIA.

PN Triangles - Hull Shader

= Partitioning the computation

= To balance the workload across threads we /_\
partition the control points into 3 uber /<—>§/\

control points
A\

= Each uber control point computes /\ /N

— 3 positions

— 2 normals

PRESENTED BY @ nVIDIA.

PN Triangles - Hull Shader

struct HS_PATCH_DATA

{
float edges[3]

float inside
float center[3]

};

: SV_TessFactor;
: SV_InsideTessFactor;
: CENTER;

struct HS_CONTROL_POINT
{

};

float pos1[3] : POSITION1;
float pos2[3] : POSITIONZ2;
float pos3[3] : POSITION3;
float3 norl : NORMALO;
float3 nor2 : NORMAL1;
float3 tex : TEXCOORD®;

Control point 1

pos3 /@
pos2 /@

posl @
Positions

Data output by the patch
constant function

Data output by main
tessellation function

nor2 /@

norl @;
eresenrener 8 MVIDIA.

Normals

PN Triangles - Hull Shader

[domain("tri™)]
[outputtopology("triangle cw")]
[outputcontrolpoints(3)]

[partitioning("fractional_odd")] z(//

Positions

[patchconstantfunc("HullShaderPatchConstant")]
HS_CONTROL_POINT HullShaderControlPointPhase(InputPatch<HS DATA INPUT, 3> inputPatch,

uint tid : SV_OutputControlPointID, uint pid : SV_PrimitivelID) Normals
{
int next = (1 << tid) & 3; // (tid + 1) % 3 Control point 1
float3 pl = inputPatch[tid].position;
float3 p2 = inputPatch[next].position;
float3 nl1 = inputPatch[tid].normal; Read input data
float3 n2 = inputPatch[next].normal;
HS_CONTROL_POINT output;
\
//control points positions
output.posl = (float[3])p1;
output.pos2 = (float[3])(2 * pl + p2 - dot(p2-pl, nl) * nl);
output.pos3 = (float[3])(2 * p2 + pl - dot(pl-p2, n2) * n2); >. Compute control
//control points normals points
float3 v12 = 4 * dot(p2-pl, nl+n2) / dot(p2-pl, p2-pl);
output.norl = nil;
output.nor2 = nl + n2 - vil2 * (p2 - pl);)

output.tex = inputPatch[tid].texcoord;
PRESENTED BY @ NVIDIA.

PN Triangles - Hull Shader

//patch constant data
HS_PATCH_DATA HullShaderPatchConstant(OutputPatch<HS_CONTROL_POINT, 3> controlPoints)

{
HS PATCH DATA patch = (HS PATCH DATA)®O;
//calculate Tessellation factors
HullShaderCalcTessFactor(patch, controlPoints, @);
HullShaderCalcTessFactor(patch, controlPoints, 1);
HullShaderCalcTessFactor(patch, controlPoints, 2);
patch.inside = max(max(patch.edges[@], patch.edges[1]), patch.edges[2]);
//calculate center
float3 center = ((float3)controlPoints[@].pos2 + (float3)controlPoints[@].pos3) * ©.5 -
(float3)controlPoints[@].posl +
((float3)controlPoints[1].pos2 + (float3)controlPoints[1].pos3) * 0.5 -
(float3)controlPoints[1].posl +
((float3)controlPoints[2].pos2 + (float3)controlPoints[2].pos3) * 0.5 -
(float3)controlPoints[2].posl;
patch.center = (float[3])center;
return patch;
}

//helper functions
float edgelLod(float3 posl, float3 pos2) { return dot(posl, pos2); }
void HullShaderCalcTessFactor(inout HS_PATCH_DATA patch,
OutputPatch<HS_CONTROL_POINT, 3> controlPoints, uint tid : SV_InstancelD)
{
int next = (1 << tid) & 3; // (tid + 1) % 3
patch.edges[tid] = edgelLod((float3)controlPoints[tid].pos1,
float3)controlPoints[next].posl);
(float3) [next].post); resenreosy S NVIDIA.

return;

Tessellation Pipeline

HS output:
* output control points

* Tessellation factors Domain Shader J

DS Input from Tessellator:
e uvw coordinates for one vertex

DS Output:
* one tessellated vertex

PN-Triangles - Domain Shader

DS_DATA_OUTPUT DomainShaderPN(hS PATCH DATA patchData,
[const OutputPatch<HS_CONTROL POINT, 3> input) [float3 uvw : SV_DomainLocation) |

{
DS_DATA_OUTPUT output;

float u = uvw.x;
float v = uvw.y;
float w = uvw.z;

//output position is weighted combination of all 10 position control points

float3 pos = (float3)input[@].posl * w*w*w +(float3)input[1].posl * u*u*u +(float3)input[2].posl * v*v*v +
(float3)input[@].pos2 * w*w*u +(float3)input[@].pos3 * w*u*u +(float3)input[1].pos2 * u*u*v +
(float3)input[1].pos3 * u*v*v +(float3)input[2].pos2 * v*v*w +(float3)input[2].pos3 * v*w*w +
(float3)patchData.center * u*v*w;

//output normal is weighted combination of all 6 normal control points
float3 nor = input[@].norl * w*w + input[1].norl * u*u + input[2].norl * v*v +
input[@].nor2 * w*u + input[1].nor2 * u*v + input[2].nor2 * v*w;

//transform and output data

output.position = mul(float4(pos,1), g mViewProjection);
output.view = mul(float4(pos,1l),g mView).xyz;

output.normal = mul(float4(normalize(nor),1),g mNormal).xyz;
output.vUV = input[@].tex * w + input[1l].tex * u + input[2].tex * v;

PRESENTED BY @ NVIDIA.

10N

I ESELELD

Terra

<
=
2
®

Terrain Tessellation Basics

» Flat quads; regular grid; can be instanced
» Height map; vertical displacement; sample in DS

~ PRESENTED BY NVIDIA.

Screen-space-based LOD (Hull shader)

» Enclose quad patch edge in bounding sphere

* Project into screen-space

-
Screen o

» As per edge = diameter / target A size
» (diameter & target size in pixels)

» Fully independent of patch size rreseeosr €4 NVIDIA.

Screen-space-based LOD

» Why quad-edge bounding sphere?
» Projected edges seen edge-on:
— — zero width in screen-space

— — min tessellation & bad aliasing
» Spheres = orientation independent

Displaced terrain

Displaced quad

G2 *

Quad edge

PRESENTED BY @ NVIDIA.

N/ A . B AT
NS ARVIN /N 7L NN 7N
SRRV | S VEAEANAAV Y VIS
s W7 ZIAVANAN 4 @]
AN NN N/
VA |l ANAVAY. e\ NN
WINTINS a7/ 77 N N\ 7AYAVS
ATNASNNAY, g AUNANRN 2 iV 7 ANANV
Anu!AVM"U:\ﬂC!G&?AV‘)(QSE WAL 7N
SR AN 1 7]
IS\ NN NN IAVEEZAVA
ANAVANE Z.74" 7 Wi\ \\ &7
NN

PRESENTED BY @ NVIDIA.

N7

e T\\A]
FLLI\NN
N
(N7

A

AR

7

lar size
T}/.
I\

(2

Simi

VY
AR
i‘r‘ﬁ

Wy, T
WA
POV
POV
WK
ANAY,

\L7
P

v
=
-
n
Q
a4
)
@
-
O
Q
w
o
0

/A
v;

Wy

2

2
A,

,,

> N

DOV

S
NS

AN
Ay, AVAVA
AN

-space-

rfs
R
N

Screen

Crack-free Tessellation

» Match edge data between adjacent patches
= Match HS LOD calculations
= Easy to break accidentally

— Cracks are small & subtle
— Check very carefully

. =Debug camera, independent matrices for:
= — Projection
— LOD

PRESENTED BY @ NVIDIA.

Non-uniform Patches

» Max tessellation = 64 — limited range of LODs

» Patches of different sizes required

= Recall: screen-space LOD independent of patch size

LI 248821
@ $494 4
444904944

XN
ATavivi%a

Crack-free Non-uniform Patches

» Gets tricky

* Encode adjacent neighbours’ sizes in VB
* In HS: detect different size neighbours

» Match their LOD calculations

» Result: long HS = 460 hs_5_0 instructions

eresenenay. 8 MVIDIA.

Data Problems

= Large world, say 60x60km
* Fine tessellation, say 2m As
= Naive height map is 100s Mb to Gb

. "Migrate existing engine to DX11
== = DX9/10: coarse data relative to tessellation capabilities

PRESENTED BY @ NVIDIA.

Data Solution: Fractal “Amplification”

= Coarse height map defines topographic shape

» Fractal detail map adds high-LOD detail

» Cheap memory requirements

» Can reuse coarse assets from DX9 or DX10 engine

= Old diagram from /@\ <,f”\f’
— “Computer Rendering of \\

%))
Stochastic Models”, x/ Y

Fournier Fussell & 7 3 /’K/‘\
1. /_——"—/
Carpenter, 1982 N %

PRESENTED BY @ NVIDIA.

Data Solution: Fractal “Amplification”

» Coarse height map defines topographic shape
= Upsample
» High-quality filter to smooth

— We used bicubic

Bicubic Noise
—

PRESENTED BY @ NVIDIA.

Data Solution: Fractal “Amplification”

» Add detail height map:

— fBm noise - fractally self-similar to
coarse data

— Must tile
— Scale amplitude intelligently - doesn’t
work everywhere
= Fn of height (like Musgrave’s multi-fractals)

= As a fn of coarse data roughness (reuse
existing normal map)

= Explicit mask (e.g., under buildings)

eresenenay. 8 MVIDIA.

PRESENTED BY @ NVIDIA.

Results

»

-
=

1cat

if

Fractal “Ampl

Fractal “Amplification” - Results

PRESENTED BY @ NVIDIA.

Fractal “Amplification” - Results

PRESENTED BY @ NVIDIA.

Fractal “Amplification” - Results

PRESENTED BY ‘¥

PRESENTED BY

Results

»

-
=

t

ifica

Fractal “Ampl

Fractal “Amplification” - Limits

» Real terrain not always fractally self-similar
» Best when coarse data is like fBm

= Erosion features - rivers, gorges, rivulets -
difficult/impossible in tiling detail map

= fBm lumps not good model, especially at ~1m scale, e.g.
rocks & scree

» Best at mid- and low-LOD
» Acceptable at very fine LOD

PRESENTED BY @ NVIDIA.

Fractal “Amplification” - Limits

eresenenay. 8 MVIDIA.

Fractal “Amplification” - Limits

PRESENTED BY @ NVIDIA.

Tessellation Shading

= Tessellation can be used for
other novel effects

* You can do shading in the DS!

— Can be used to selectively
evaluate low freq functions

— Examples: caustics, fourier
opacity maps

JIA.

Outline: Multithreading

= Why DirectX 117

* Direct Compute

= Tessellation

* Multithreaded Command Buffers

= Dynamic Shader Linking

= New texture compression formats

= Read-only depth, conservative oDepth, ...

eresenenay. 8 MVIDIA.

Motivation - Multithreading

* |n previous Direct3D versions, multithreaded rendering not
really possible

— Device access restricted to one thread unless you force brute force
thread safety

— Difficult to spread driver / runtime load over many cpu cores

= |[deally, you’d like threads for:
— Asynchronous resource loading / creation
— Parallel render list creation

» Direct3D 11 supports both of these

PRESENTED BY @ NVIDIA.

Multithreading - Interfaces

ID3D11Device

Check
Create

ID3D11DeviceContext

Draw
GS/IAJOM/PS/RS/SO/VS[H5]
Map/Unmap

\\\—_/’ pREsENrEDVVBY @ NVIDIA.

Async Loading

= Previously, D3D required resource creation and rendering to
happen from the same thread.

= So at best, it worked like this:

-

Potentially costly, D3D11
makes them async

\

eresenenay. 8 MVIDIA.

Async Loading

= With D3D11, rendering does not happen on the device, but
instead on a device context

— Immediate Context (actual rendering)
— Deferred Contexts (display list creation)

» 50 the Device calls (create, etc.) can happen
asynchronously

PRESENTED BY @ NVIDIA.

Multithreading - Contexts

Thread O Thread 1 Thread 2 Thread 3
l Deferred Contexts l
Draw/Map/Unmap

<Shader>Get/Set
State Set

Immediate Context

_—)
FinishCommandList

e — PRESENTED BY @ NVIDIA.

Multithreading - Code Snippets

pd3dDevice->GetImmediateContext(&yImmediateContext);

for (i = @; 1 < iNumThread; ++i) {
pd3dDevice->CreateDeferredContext (0, &MyDeferredContext[i]);
thread[i] = _beginthreadex(...);

Main Thread

MyDeferredContext[id]->ClearRenderTargetView(pRTV, ClearColor);
. // (Draw, Map/Unmap, Shaders ..)

MyDeferredContext[id]->FinishCommandList(FALSE, &);

SetEvent(hEvent[id]);

~< Worker Thread

WaitForMultipleObjects(iNumThread, hEvent, TRUE, INFINITE);

for (i = ©; 1i < iNumThread; ++1i) {
MyImmediateContext->ExecuteCommandList(, FALSE);

->Release();

Main Thread

Deferred Contexts - Tips

= Deferred Contexts display lists are immutable
* Map is only supported with DISCARD
* No readbacks or getting data back from the GPU

— Queries, reading from resources, etc.
* No state inheritance from immediate context
— Start with default state
— You should still aim to reduce redundant state submission
» Some cost to creating / finishing / kicking off DL
— Favor large display lists, not tiny ones
— 100+ draw calls per display list is good

PRESENTED BY @ NVIDIA.

Outline - Dynamic Shader Linking

= Why DirectX 11?

* Direct Compute

= Tessellation

» Multithreaded Command Buffers

= Dynamic Shader Linking

= New texture compression formats

= Read-only depth, conservative oDepth, ...

PRESENTED BY @ NVIDIA.

Dynamic Shader Linking - Motivation

= With complex materials, you currently have two choices:
— Uber Shader
— Preprocessor shader combinations

= Neither is ideal

PRESENTED BY @ NVIDIA.

Dynamic Shader Linking - Motivation

Shader A:
doLighting()
Shader B:

Uber Shader

if (bLighting)
doLighting()

if (bTexture)
doTexturing()

if (bFog)
doFogging()

¥

o Expensive flow
£ control!

y —— —

\““—-_

doLighting()
doTexturing()
Shader C:

¥
-y =

e Explosion of
py shaders!

Y ——— —R

\\\

eressnreney. 24 MVIDIAL,

Dynamic Shader Linking

= Dynamic Shader Linking is here to get the best of both
worlds

= Allows you to define interfaces

» Allows you to define classes which inherit from these
interfaces

= Resolves the correct target at runtime with little overhead

PRESENTED BY @ NVIDIA.

Dynamic Shader Linking - Example

iLight g Lights[4];

cbuffer cbData |'{
cAmbient g Ambient
cDirectigonal| g Directionale;

interface iLight {
float4 Calculate(..);

}s

class cAmbient : ilight { cDirectional | g Directionall;

float4 m_Ambient; cDirectional | g Directional2;

float4 Calculate(..) ¥ cDirection@l | g Directional3;
return m_Ambient) }

}s float accumulatellights(..) {

for (uint 2 = ©; i < g NumLights; ..) {
col += g lLights[i].Calculate(...);

class cDirectional : DNight\{
float4 m Dir;
float4 m_Col;
float4 Calculated..) ¢
float ndotl = saturcate(dot{iy));
return m_Col * intensity;}

}

g ntRgRace
9 is decided

eressnreney. 24 MVIDIAL,

Outline - New Texture Compression

= Why DirectX 117

* Direct Compute

= Tessellation

» Multithreaded Command Buffers

= Dynamic Shader Linking

= New texture compression formats

= Read-only depth, conservative oDepth, ...

eresenenay. 8 MVIDIA.

New Compression Formats

= Two new compression formats: BC6H & BC7

= BC6H: HDR texture compression
— RGB only
— Signed and Unsigned
— 16 bit floating point values
— 6:1 compression
= BC7: High Quality LDR texture compression

— RGB with optional Alpha
— 3:1 (RGB) or 4:1 (RGBA) compression

PRESENTED BY @ NVIDIA.

BC6H Compression Quality

* Objective:
— Replace uncompressed FP16x4 and RGBE textures

FP16x4

uffizi cross 63.75 63 70 108
95

stpeters cross
rnl cross
grace cross

Average PSNR

Average PSNR / Bits
per pixel

eressnreney. 24 MVIDIAL,

BC7 Compression Quality

SN AN

/

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Kodak Image #

—8— DXT1 —*— Y CoCg DXT5 BC7L

rresenteney 4 MVIDIA.

Texture Compression - BC7

BC3

- BC7

Abs Error s SANVIDIA.,

Outline - New Depth Features

= Why DirectX 117

* Direct Compute

= Tessellation

» Multithreaded Command Buffers

= Dynamic Shader Linking

= New texture compression formats

= Read-only depth, conservative oDepth, ...

eresenenay. 8 MVIDIA.

Read-Only Depth - Motivation

* [n previous Direct3D versions you cannot bind a depth buffer
for depth test and also read it in shader

— Implies potential data hazards

= But if depth writes are disabled, there actually is no hazard

— API was not expressive enough to capture this

PRESENTED BY @ NVIDIA.

Read-Only Depth - Implementation

#define D3D11_DSV_FLAG_READ ONLY_DEPTH
#define D3D11_DSV_FLAG_READ ONLY STENCIL

typedef struct D3D11 DEPTH_STENCIL VIEW DESC
{
DXGI_FORMAT Format;
D3D11 DSV_DIMENSION ViewDimension;

DWORD Flags;
union

{
D3D11_TEX1D_DSV TexturelD;
D3D11_TEX1D_ARRAY_DSV TexturelDArray;
D3D11_TEX2D_DSV Texture2D;
D3D11_TEX2D_ARRAY_DSV Texture2DArray;
D3D11_TEX2DMS_DSV Texture2DMS;
D3D11_TEX2DMS_ARRAY_DSV Texture2DMSArray;

}s
} D3D11_DEPTH_STENCIL VIEW DESC;

ox1;
0x2;

eressnreney. 24 MVIDIAL,

Read-Only Depth - Applications

= Soft Particles!

— Typically alpha blended, so you test
depth but don’t write

— Need access to depth buffer to soften
edges as you near another surface

PRESENTED BY @ NVIDIA.

Conservative oDepth

* Modifying the depth value in the pixel shader currently Kills
all early-z optimizations

— Early-z optimizations are critical to high performance

= But many algorithms do not arbitrarily change depth

— Direct3D 11 can take advantage of this to improve performance

PRESENTED BY @ NVIDIA.

Conservative oDepth

= Two new system values

» Example (depth comparison func LESS_EQUAL):
float depth : SV _DepthGreaterEqual

= You’re promising to push the fragment into the scene

= So Early Z Cull will work!
float depth : SV DepthLessEqual

= You’re promising to pull the fragment towards the camera

= So Early Z Accept will work!

PRESENTED BY @ NVIDIA.

Summary

= Direct3D 11 is fast...
— Multithreading, new depth functionality

= _.flexible...

— Dynamic shader linking, broad compatibility

= ...and enables higher quality effects

— Tessellation, compute, new texture compression

PRESENTED BY @ NVIDIA.

PRESENTED BY @ NVIDIA.

-

o
. O
v ©
C ..|
O =
- @
Q -

O
= o
o

