
Parallel GPU Algorithms for
Interactive CAD

Sara McMains

Adarsh Krishnamurthy

UC Berkeley

Berkeley, CA, USA

University of California, Berkeley

Outline

15 September 2010 2

Motivation &
Background

NURBS
Evaluation

Surface
Intersection

University of California, Berkeley

Limitations of Existing CAD Systems

15 September 2010 3

40 Features

Existing CAD systems are slow

Example – model rebuilds
 Surface evaluations
 Boolean CSG operations

Low interactivity

Require fast algorithms for modeling operations

University of California, Berkeley

Limitations of Existing CAD Systems

15 September 2010 4

Lack functionality

Direct modeling operations
 Many steps required for

trimming, sketching, etc.
 Lack immediate visual

feedback

Cannot provide interactive
feedback

Require algorithms that enhance

functionality

University of California, Berkeley

GPU-Algorithm Development

15 September 2010 5

GPU/CPU operations
 Distribution of work
 Some operations inherently serial

GPU restrictions
 Dynamic loops
 Memory reads and writes
 Single precision

GPU performance guidelines
 Coherent memory reads
 Branchless kernels
 Reduced data read-back from GPU

Challenges

Separation of CPU/GPU operations
 NURBS evaluations

Imposing artificial structure to the
computations
 Surface-surface intersections

Strategies

Multiple GPU vendors
 Implementation: not vendor-specific
 Algorithms: any massively parallel

architecture
 Many-core CPUs

University of California, Berkeley

Outline

15 September 2010 6

Motivation &
Background

NURBS
Evaluation

Surface
Intersection

CPU/GPU Task
Distribution

University of California, Berkeley

11 1

1

1 1

10

() () ()

1
()

0

i pp p pi
i i i

i p i i p i

i i

i

u uu u
N u N u N u

u u u u

if u u u
N u

otherwise

0 0

0 0

() ()

(,)

() ()

m n
p q

i j ij ij

j i

m n
p q

i j ij

j i

N u N v w P

S u v

N u N v w

NURBS Representation

15 September 2010 7

Model

Space

x
y

z

(u0,v0)
S(u0, v0)

S(1,0)

S(0,0)

S(0,1)

S(1,1)

(0,0) (0,1)

(1,1)(0,1)

Non Uniform Rational
B-Spline surfaces

De facto surface
representation
• Most general spline
• Piecewise-polynomial
tensor product surfaces

Compact definition
Defined completely by
• Control mesh
• u and v knot vectors

u1 u2 u3

v1

v2

v3

Parametric

Space

u

v

University of California, Berkeley

NURBS Evaluation

 Several methods for evaluation
 Power law

 Numerically unstable for higher degrees

 Issues with single precision graphics cards

 Subdivision
 Requires recursion

 Not easily parallelizable

 de Boor evaluation
 Evaluate higher degree basis functions using lower degree

basis functions

 Steps (given parameter ‘u’)
 Find the knot span in which ‘u’ lies

 Compute basis function values

 Multiply basis function values with control points and
add

15 September 2010 8

University of California, Berkeley

Parallelizing Basis Function Evaluation

15 September 2010 9

11 1

1

1 1

() () ()
i pp p pi

i i i

i p i i p i

u uu u
N u N u N u

u u u u

10
1

()
0

i i

i

if u u u
N u

otherwise

Unroll Recursion

Start from 0-degree basis function

Build higher degree basis
functions from lower degree

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Different

parameter

values u

0 0 0 1 0 0 0

0 0 x x 0 0

0 x x x 0

x x x x

Degree

0

1

2

3

Evaluate for different parameter
values simultaneously

Degree 3

GPU Implementation
Ni

p(u)

Standard Serial ImplementationFaster Parallel Implementation

0 1
x = non-zero value

University of California, Berkeley

0 0

(,) () ()
m n

p q

i j ij ij

j i

S u v N u N v w P

u

v

Parallelizing Control Point Multiplication

15 September 2010 10

Basis Functions

n

m

Control Mesh u

v

Evaluation Mesh

Example for bi-cubic case

Only a sub-mesh of control points
need to be multiplied

Perform multiplication operation
in a GPU Kernel

Add each multiplicative term in
parallel (16 terms for bi-cubic)Standard Serial ImplementationFaster Parallel Implementation

for j = 0 to m
for i = 0 to n

S(u,v) += Ni
3(u)Nj

3(v)wijPij

for j = 0 to 3
for i = 0 to 3

S(u,v) += Ni
3(u)Nj

3(v)wijPij

CPU

GPU Kernel

University of California, Berkeley

5.84

0.66

0.35
0.13

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

E
v
a
lu

a
ti

o
n

 T
im

e
 (

s
)

Number of Evaluation Points

CPU GPU1 GPU2 GPU3 GPU4

Results

15 September 2010 11

40x

better

Serial CPU

Evaluation

Parallel GPU

Evaluation

University of California, Berkeley

Results – CUDA vs. GPGPU

15 September 2010 12

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

E
v
a
lu

a
ti

o
n

 T
im

e
 (

s
)

Number of Points

CUDA CUDA NoPP GPGPU

CUDA Textures GPGPU Packed GPGPU NoPP

Higher Texture

Initialization Time

Better scaling

for large

evaluation

University of California, Berkeley

Outline

15 September 2010 13

Motivation &
Background

NURBS
Evaluation

Surface
Intersection

Structured
Computations

University of California, Berkeley

x
y

z

u

v

u

v

Model Space Parametric Spaces

Surface 2

Surface 1

Surface-Surface Intersection

15 September 2010 14

Conventional Methods

• Newton-Raphson iteration

• Find single intersection point

• Curve marching techniques

Parametric

curves

Model space

intersection

curves

[Barnhill et al. 1990]

Parallelizable Solution
Use surface bounding-boxes

Disadvantages

• Inherently serial operations

• Difficult to parallelize

• Slow

University of California, Berkeley

Surface Bounding-Boxes

15 September 2010 15

Fit Axis-Aligned Bounding-Boxes (AABBs)

• Use grid of points already evaluated

• Find min, max x, y, & z coordinates of four
adjacent evaluated points

Advantage over OBBs

• Easier intersection tests

• OBB intersection fragment program
significantly longer and complex

Problem using evaluated coordinates

• Surface patch may penetrate out of
the bounding-box

University of California, Berkeley

1 2 32 2

1 1 2 1

8
K M M M

n nm m

Curvature-based Surface Bounds

15 September 2010 16

[Filip et al. 1986]

K K

K
K

n

m

Parametric Space

M1 = Max(∂2S/∂u2)

M2 = Max(∂2S/∂u ∂v)

M3 = Max(∂2S/∂v2)

K – Maximum deviation of the surface
from piecewise-linear approximation

Calculate bounding-box based on
coordinates

Increase size of bounding box by K

University of California, Berkeley

Surface-Surface Intersection Algorithm

15 September 2010 17

Construct finest level bounding-boxes
based on user-specified tolerances

Construct bounding box hierarchies

Traverse the hierarchy from coarsest
to finest level while keeping track of
intersecting bounding-boxes

Get bounding-boxes at finest level

Intersect linearized patches on CPU to
get points on the intersection curve

Parametric Space

Model Space Surface 1 Surface 2

Fit a polyline through the points

University of California, Berkeley

GPU Implementation

15 September 2010 18

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Construct bounding box hierarchies

Check largest box for intersection

Check and track subsequent levels
using the GPU

Test for intersection in sets of 4 boxes
from each surface

GPU acceleration effective when more
boxes intersect at finer levels

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Surface 1 Surface 2

Surface 2

Intersection Texture

S
u

rf
a

c
e

1

University of California, Berkeley

Results

15 September 2010 19

50x
faster

More
accurate

Surface-Surface Intersection TimingSurface-Surface Intersection

Tolerance

Intersection curve

ACIS polyline

Evaluated points

GPU polyline

University of California, Berkeley

GPU Programming Insights

15 September 2010 20

Dramatic performance gains
•Frequently orders of magnitude improvement
•However, requires GPU-optimized algorithms

Compare both speed and accuracy
•CPU and GPU algorithms compared may be
fundamentally different

•GPU algorithm needs to be faster and be at least
as accurate as the CPU algorithm

Guaranteed user-specified tolerances
•Enables direct adoption of GPU algorithms in CAD

GPU framework
•Reduce development time for new algorithms
•Helps in performance tuning and optimization Traditional

Computations

Serial
Operations

CPU GPU

Map
Parallel

Operations

Reduce

Display

Read

University of California, Berkeley

Acknowledgments

15 September 2010 21

 Kirk Haller

 Funding Sources

 SolidWorks Corporation

 UC Discovery

 NSF

 Equipment

 NVIDIA

 AMD

