Parallel GPU Algorithms for
Interactive CAD

Sara McMains
Adarsh Krishnamurthy

UC Berkeley
Berkeley, CA, USA

Qutline

15 September 2010

Motivation &
Background

NURBS

Surface

Evaluation Intersection

iversity of California, Berkel

Limitations of Exnstmg CAD Systems

:@solldWorka :

e 8 — | Existing CAD systems are slow

(@) Surface Bodies(1)
- 3= Material <not specified> .
o = Surface evaluations

o

 -||| Example — model rebuilds
‘J].
~ || = Boolean CSG operations

o U5 A
pd AN

—_
]
o

: [Body -> (Default)

& OMsketch
[y moffset

&5 M Trim

Low interactivity

T

%% M Mirror A
: w M Knit 4 '.;‘= ,,,,,,
@) MThicken |
i+ [Hinge1
I_J @ Hinge Clearance
@) Filet1
i ([@ Headight Backing
] @ Headlight1
e Headlight1 Curve
. [08 Headight2
® Mirror Plane
i+ E Bird Door Hinge
% Bird Door Plane1
., Bird Door Plane2
& ([Bird Door Box1
i+ ([Bird Door Box2

2 ki 40 Features

Solidworks Office Professional 2008 EdingPart [2]

CAmid® S CI@SJ-@-@@E

aw
aa
aa

B &

s
Vs
&\

\?"fm

| s6886mE

Require fast algorithms for modeling operations

15 September 2010 iversity of California, Berkel€

Limitations of Existing CAD Systems

Trimming on existing commercial
CAD software

Require algorithms that enhance
functionality

15 September 2010

Lack functionality

Direct modeling operations
= Many steps required for
trimming, sketching, etc.
= Lack immediate visual
feedback

Cannot provide interactive
feedback

ty of California, B

GPU-Algorithm Development

Challenges

Strategies

GPU/CPU operations
= Distribution of work
» Some operations inherently serial

Separation of CPU/GPU operations
= NURBS evaluations

GPU restrictions
= Dynamic loops
= Memory reads and writes
= Single precision

Imposing artificial structure to the
computations
» Surface-surface intersections

GPU performance guidelines
= Coherent memory reads
= Branchless kernels
= Reduced data read-back from GPU

Multiple GPU vendors
= Implementation: not vendor-specific
= Algorithms: any massively parallel
architecture
= Many-core CPUs

15 September 2010

rsity of California, Be

Qutline

15 September 2010

Motivation & NURBS Surface
Background Evaluation Intersection
CPU/GPU Task
Distribution

iversity of California, Berkel

NURBS Representation

‘1
5(0,1)

Parametric Model
Space Space

n

Ms

N‘p(u)N?(V)V"ij R N (U) = ——

Non Uniform Rational
B-Spline surfaces

De facto surface

s(1,1) | representation

» Most general spline

* Piecewise-polynomial
tensor product surfaces

Compact definition
Defined completely by
« Control mesh
*u and v knot vectors

u. —u
Nip—l(u) + i+p+l N p—l(u)

i+1

S(U V) _ j=0 i= i+p i i+p+l i+l
SN 1 if u < |
Z N P (U)N (V) Nio (u) :{ IT U, suU< Lf.+1
=0 i- 0 otherwise

15 September 2010

ersity of California, Ber

NURBS Evaluation

s Several methods for evaluation

= Power law
= Numerically unstable for higher degrees
= ISsues with single precision graphics cards

= Subdivision
= Requires recursion
= Not easily parallelizable

= de Boor evaluation

» Evaluate higher degree basis functions using lower degree
basis functions

s Steps (given parameter ‘u’)
= Find the knot span in which ‘u’ lies
= Compute basis function values

= Multiply basis function values with control points and
add

15 September 2010 sity of California, Be

Parallelizing Basis Function Evaluation

Unroll Recursion
T Uivp —U; T Uispn ~Uin 'F Start from 0-degree basis function

Build higher degree basis
functions from lower degree

Evaluate for different parameter
values simultaneously

—1L u. —Uu
N (U) =~ NP (u) + —2L NP ()

1 if u<u<u,
0 otherwise

Nio(u) :{

Faster Parallel Implementation

Degree Ni p(u) GPU Implementation
| >
o |0 0 o 1 0|0 O
Different
1 IO 0 X X 0 I 0 parameter
values u
2 |0 x x x 0| v
Degree 3

3 | X X X X |

X = non-zero value S

15 September 2010 ersity of California, Ber 9

Parallelizing Control Point Multiplication

S(u,v) = ZZ NP (U)NE (v)w, P Example for bi-cubic case
j=0 i=0 Only a sub-mesh of control points
forj = 0to 3 — need to be multiplied
fori=0to 3 Perform multiplication operation

S(u,v) += N (U)N*(V)w;P; | GPU Kernel | in a GPU Kernel

Add each multiplicative term in
parallel (16 terms for bi-cubic)

Faster Parallel Implementation

m
Control Mesh Evaluation Mesh

Basis Functions

15 September 2010 arsity of California, Ber 10

Results

6.00

_4584 Serial CPU
e Evaluation
Id
5.00 -7
Ve
.A/
~ P s ’
\G"’-; 4.00 g
£ 7
= f
S 3.00 _” ‘ 40x
= s better
e
= Pt
©
2.00 g
A,
i e
1.00 na v
e 0.66 Parallel GPU
A e — . —X 0.35 i
. — —+ 013 Evaluation
0.00
0 200,000 400,000 600,000 800,000 1,000,000 1,200,000
Number of Evaluation Points
-~ CPU —+GPUl ——GPU2 —+GPU3 —<—GPU4

15 September 2010

versity of California, Berke

11

Results

0.030
0.025
0.020
0.015

0.010

Evaluation Time (S)

0.005

0.000

Higher Texture
Initialization Time

15 September 2010

— CUDA vs. GPGPU

\

\

%

for large
'{ evaluation
v
0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

Number of Points

-=-CUDA -+ CUDA NoPP --GPGPU
=—-CUDA Textures -*GPGPU Packed =<GPGPU NoPP

iversity of California, Berke

Better scaling

12

Qutline

Motivation & NURBS Surface
Background Evaluation Intersection
Structured
Computations

15 September 2010 iversity of California, Berkel

13

Surface-Surface Intersection

Model space .
intersection Parametric Conventional Methods
curves curves

o Newton-Raphson iteration
e Find single intersection point
e Curve marching techniques

Surface 1

[Barnhill et al. 1990]

Disadvantages

Surface2 e Inherently serial operations
e Difficult to parallelize

e Slow

Parallelizable Solution
Use surface bounding-boxes

iversity of California, Berke 14

Model Space

Parametric Spaces

15 September 2010

Surface Bounding-Boxes

Fit Axis-Aligned Bounding-Boxes (AABBS)

¢ Use grid of points already evaluated

e Find min, max x, y, & z coordinates of four
adjacent evaluated points

15 September 2010

iversity of California, Berke

Advantage over OBBs

e Easier intersection tests

e OBB intersection fragment program
significantly longer and complex

Problem using evaluated coordinates

e Surface patch may penetrate out of
the bounding-box

>

Curvature-based Surface Bounds

Parametric Space

15 September 2010

M, =
M, = Max(825/0u 6v)
M, =

2 1

Max(52S/0u?)

Max(92S/ov?)

m

K — Maximum deviation of the surface

from piecewise-linear approximation

Calculate bounding-box based on
coordinates

Increase size of bounding box by K

[Filip et al. 1986]

K

é

ersity of California, Berk

16

Surface-Surface Intersection Algorithm

Parametric Space

Model Space

15 September 2010

Construct finest level bounding-boxes
based on user-specified tolerances

Construct bounding box hierarchies

Traverse the hierarchy from coarsest
to finest level while keeping track of
intersecting bounding-boxes

Get bounding-boxes at finest level

Intersect linearized patches on CPU to
get points on the intersection curve

Fit a polyline through the points

Surface 1 Surface 2

versity of California, Berke 17

GPU Implementation

Surface 2

00|01 (02|03 00]|01]|02] 03

10 (11|12 (13 10| 11 (12| 13

20 | 21 (22 | 23 1 20 | 21 | 22 | 23

Surface 1

30 [31 (32|33 }30(|31](32]33

Intersection Texture

Construct bounding box hierarchies

Check largest box for intersection

Check and track subsequent levels
using the GPU

Test for intersection in sets of 4 boxes

from each surface

GPU acceleration effective when more

boxes intersect at finer levels

0 ol1]o]1
2131213
01 0|1
2|3 2|3
Surface 1 Surface 2

15 September 2010

sity of California, Be

18

Results

Surface-Surface Intersection Timing

35 L 18000
~_ 16000 =
30 S \
~ 25531 14000
25 E——— P \
—-— af— _______] £ 12000
-1 6 \
» 20 2 10000
[} [o]
£ 50x o \
iz 15 f t é 8000 N \
aster 5 6000
10 = More Nsoz2
4000
5 v accurate| N\
2000
0.593 103 \\j
0 ‘ ; 0 — - —_—
0.0001 0.0010 0.0100 0.1000 0.0001 0.0010 0.0100 0.1000
Tolerance Tolerance
=o=GPU-Accelerated — -ACIS —o=GPU-Accelerated — -ACIS
Tolerance
3 ,. S ()
I P Intersection curve

15 September 2010

o

ersity of California, Berk

ACIS polyline
Evaluated points
GPU polyline

19

GPU Programming Insights

Dramatic performance gains
* Frequently orders of magnitude improvement
*However, requires GPU-optimized algorithms

Compare both speed and accuracy
« CPU and GPU algorithms compared may be
fundamentally different
* GPU algorithm needs to be faster and be at least
as accurate as the CPU algorithm

Guaranteed user-specified tolerances
Enables direct adoption of GPU algorithms in CAD

GPU framework
*Reduce development time for new algorithms
*Helps in performance tuning and optimization

15 September 2010

uuuuu

ooooo

eeeeeeeee

Parallel
Operations

Serial
Operations

Traditional

Computations Reduce

sity of California, Be

Display

20

Acknowledgments
n Kirk Haller

= Funding Sources
» SolidWorks Corporation

= UC Discovery
= NSF

s Equipment
= NVIDIA
« AMD

15 September 2010

arsity of California, Ber

21

