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Limitations of Exnstmg CAD Systems
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Require fast algorithms for modeling operations
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Limitations of Existing CAD Systems

Trimming on existing commercial
CAD software

Require algorithms that enhance
functionality
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Lack functionality

Direct modeling operations
= Many steps required for
trimming, sketching, etc.
= Lack immediate visual
feedback

Cannot provide interactive
feedback
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GPU-Algorithm Development

Challenges

Strategies

GPU/CPU operations
= Distribution of work
» Some operations inherently serial

Separation of CPU/GPU operations
= NURBS evaluations

GPU restrictions
= Dynamic loops
= Memory reads and writes
= Single precision

Imposing artificial structure to the
computations
» Surface-surface intersections

GPU performance guidelines
= Coherent memory reads
= Branchless kernels
= Reduced data read-back from GPU

Multiple GPU vendors
= Implementation: not vendor-specific
= Algorithms: any massively parallel
architecture
= Many-core CPUs
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NURBS Representation
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Non Uniform Rational
B-Spline surfaces

De facto surface

s(1,1) | representation

» Most general spline

* Piecewise-polynomial
tensor product surfaces

Compact definition
Defined completely by
« Control mesh
*u and v knot vectors
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NURBS Evaluation

s Several methods for evaluation

= Power law
= Numerically unstable for higher degrees
= ISsues with single precision graphics cards

= Subdivision
= Requires recursion
= Not easily parallelizable

= de Boor evaluation

» Evaluate higher degree basis functions using lower degree
basis functions

s Steps (given parameter ‘u’)
= Find the knot span in which ‘u’ lies
= Compute basis function values

= Multiply basis function values with control points and
add
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Parallelizing Basis Function Evaluation

Unroll Recursion
T Uivp —U; T Uispn ~Uin 'F Start from 0-degree basis function

Build higher degree basis
functions from lower degree

Evaluate for different parameter
values simultaneously

—1L u. —Uu
N (U) =~ NP (u) + —2L NP ()

1 if u<u<u,
0 otherwise

Nio(u) :{

Faster Parallel Implementation
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Parallelizing Control Point Multiplication

S(u,v) = ZZ NP (U)NE (v)w, P Example for bi-cubic case
j=0 i=0 Only a sub-mesh of control points
forj = 0to 3 — need to be multiplied
fori=0to 3 Perform multiplication operation

S(u,v) += N (U)N*(V)w;P; | GPU Kernel | in a GPU Kernel

Add each multiplicative term in
parallel (16 terms for bi-cubic)

Faster Parallel Implementation

m
Control Mesh Evaluation Mesh

Basis Functions
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Results
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Results
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— CUDA vs. GPGPU
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Surface-Surface Intersection

Model space .
intersection Parametric Conventional Methods
curves curves

o Newton-Raphson iteration
e Find single intersection point
e Curve marching techniques

Surface 1

[Barnhill et al. 1990]

Disadvantages

Surface2 e Inherently serial operations
e Difficult to parallelize

e Slow

Parallelizable Solution
Use surface bounding-boxes
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Model Space

Parametric Spaces
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Surface Bounding-Boxes

Fit Axis-Aligned Bounding-Boxes (AABBS)

¢ Use grid of points already evaluated

e Find min, max x, y, & z coordinates of four
adjacent evaluated points

15 September 2010
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Advantage over OBBs

e Easier intersection tests

e OBB intersection fragment program
significantly longer and complex

Problem using evaluated coordinates

e Surface patch may penetrate out of
the bounding-box
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Curvature-based Surface Bounds

Parametric Space
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M, =
M, = Max(825/0u 6v)
M, =

2 1

Max(52S/0u?)

Max(92S/ov?)

m

K — Maximum deviation of the surface

from piecewise-linear approximation

Calculate bounding-box based on
coordinates

Increase size of bounding box by K

[Filip et al. 1986]

K
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Surface-Surface Intersection Algorithm

Parametric Space

Model Space
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Construct finest level bounding-boxes
based on user-specified tolerances

Construct bounding box hierarchies

Traverse the hierarchy from coarsest
to finest level while keeping track of
intersecting bounding-boxes

Get bounding-boxes at finest level

Intersect linearized patches on CPU to
get points on the intersection curve

Fit a polyline through the points

Surface 1 Surface 2

versity of California, Berke 17




GPU Implementation

Surface 2
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Intersection Texture

Construct bounding box hierarchies

Check largest box for intersection

Check and track subsequent levels
using the GPU

Test for intersection in sets of 4 boxes

from each surface

GPU acceleration effective when more

boxes intersect at finer levels
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Results

Surface-Surface Intersection Timing
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ACIS polyline
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GPU Programming Insights

Dramatic performance gains
* Frequently orders of magnitude improvement
*However, requires GPU-optimized algorithms

Compare both speed and accuracy
« CPU and GPU algorithms compared may be
fundamentally different
* GPU algorithm needs to be faster and be at least
as accurate as the CPU algorithm

Guaranteed user-specified tolerances
Enables direct adoption of GPU algorithms in CAD

GPU framework
*Reduce development time for new algorithms
*Helps in performance tuning and optimization
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