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40 Features

Existing CAD systems are slow

Example – model rebuilds
 Surface evaluations
 Boolean CSG operations

Low interactivity

Require fast algorithms for modeling operations
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Limitations of Existing CAD Systems
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Lack functionality

Direct modeling operations
 Many steps required for 

trimming, sketching, etc.
 Lack immediate visual 

feedback

Cannot provide interactive 
feedback

Require algorithms that enhance 

functionality
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GPU-Algorithm Development
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GPU/CPU operations
 Distribution of work
 Some operations inherently serial

GPU restrictions
 Dynamic loops
 Memory reads and writes
 Single precision

GPU performance guidelines
 Coherent memory reads
 Branchless kernels
 Reduced data read-back from GPU

Challenges

Separation of CPU/GPU operations
 NURBS evaluations

Imposing artificial structure to the 
computations
 Surface-surface intersections

Strategies

Multiple GPU vendors
 Implementation: not vendor-specific
 Algorithms: any massively parallel 

architecture
 Many-core CPUs
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NURBS Representation
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Non Uniform Rational 
B-Spline surfaces

De facto surface 
representation
• Most general spline
• Piecewise-polynomial 
tensor product surfaces

Compact definition
Defined completely by
• Control mesh
• u and v knot vectors
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NURBS Evaluation

 Several methods for evaluation
 Power law

 Numerically unstable for higher degrees

 Issues with single precision graphics cards

 Subdivision
 Requires recursion

 Not easily parallelizable

 de Boor evaluation
 Evaluate higher degree basis functions using lower degree 

basis functions

 Steps (given parameter ‘u’)
 Find the knot span in which ‘u’ lies

 Compute basis function values

 Multiply basis function values with control points and 
add
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Parallelizing Basis Function Evaluation
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Unroll Recursion

Start from 0-degree basis function

Build higher degree basis 
functions from lower degree
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Evaluate for different parameter 
values simultaneously
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GPU Implementation
Ni 

p(u)

Standard Serial ImplementationFaster Parallel Implementation
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x = non-zero value



University of California, Berkeley

0 0

( , ) ( ) ( )
m n

p q

i j ij ij

j i

S u v N u N v w P
 



u

v

Parallelizing Control Point Multiplication
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Basis Functions

n

m

Control Mesh u

v

Evaluation Mesh

Example for bi-cubic case

Only a sub-mesh of control points 
need to be multiplied

Perform multiplication operation 
in a GPU Kernel

Add each multiplicative term in 
parallel (16 terms for bi-cubic)Standard Serial ImplementationFaster Parallel Implementation

for j = 0 to m
for i = 0 to n

S(u,v) += Ni
3(u)Nj

3(v)wijPij

for j = 0 to 3
for i = 0 to 3

S(u,v) += Ni
3(u)Nj

3(v)wijPij

CPU

GPU Kernel
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40x

better

Serial CPU

Evaluation

Parallel GPU

Evaluation
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Results – CUDA vs. GPGPU
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Surface 2 
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Surface-Surface Intersection
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Conventional Methods

• Newton-Raphson iteration

• Find single intersection point

• Curve marching techniques

Parametric 

curves

Model space 

intersection 

curves

[Barnhill et al. 1990]

Parallelizable Solution
Use surface bounding-boxes

Disadvantages

• Inherently serial operations

• Difficult to parallelize

• Slow
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Surface Bounding-Boxes

15 September 2010 15

Fit Axis-Aligned Bounding-Boxes (AABBs)

• Use grid of points already evaluated

• Find min, max x, y, & z coordinates of four 
adjacent evaluated points

Advantage over OBBs

• Easier intersection tests

• OBB intersection fragment program 
significantly longer and complex

Problem using evaluated coordinates

• Surface patch may penetrate out of 
the bounding-box
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Curvature-based Surface Bounds
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[Filip et al. 1986]

K K

K
K

n

m

Parametric Space

M1 = Max(∂2S/∂u2)

M2 = Max(∂2S/∂u ∂v)

M3 = Max(∂2S/∂v2)

K – Maximum deviation of the surface 
from piecewise-linear approximation

Calculate bounding-box based on 
coordinates

Increase size of bounding box by K
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Surface-Surface Intersection Algorithm
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Construct finest level bounding-boxes 
based on user-specified tolerances

Construct bounding box hierarchies

Traverse the hierarchy from coarsest 
to finest level while keeping track of 
intersecting bounding-boxes

Get bounding-boxes at finest level

Intersect linearized patches on CPU to 
get points on the intersection curve

Parametric Space

Model Space Surface 1 Surface 2

Fit a polyline through the points
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GPU Implementation
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Construct bounding box hierarchies

Check largest box for intersection

Check and track subsequent levels 
using the GPU

Test for intersection in sets of 4 boxes 
from each surface

GPU acceleration effective when more 
boxes intersect at finer levels
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Results
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50x
faster

More
accurate

Surface-Surface Intersection TimingSurface-Surface Intersection

Tolerance

Intersection curve

ACIS polyline

Evaluated points

GPU polyline
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GPU Programming Insights
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Dramatic performance gains
•Frequently orders of magnitude improvement
•However, requires GPU-optimized algorithms

Compare both speed and accuracy
•CPU and GPU algorithms compared may be 
fundamentally different

•GPU algorithm needs to be faster and be at least 
as accurate as the CPU algorithm

Guaranteed user-specified tolerances
•Enables direct adoption of GPU algorithms in CAD

GPU framework
•Reduce development time for new algorithms
•Helps in performance tuning and optimization Traditional 

Computations

Serial 
Operations

CPU GPU

Map
Parallel 

Operations

Reduce

Display

Read
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