
San Jose (CA) | September 23rd, 2010
Christopher Dyken, SINTEF Norway
Gernot Ziegler, NVIDIA UK

GPU-accelerated data expansion
for the Marching Cubes algorithm

Agenda

 Motivation & Background

 Data Compaction and Expansion

— Histogram Pyramid algorithm and its variations

— Optimizations and benchmark results

 Marching Cubes based on Histogram Pyramids

— Mapping and performance considerations

— Benchmark results

 Visualization of SPH simulation results

— Videos

Motivation: Fast SPH visualization

 Smoothed-particle Hydrodynamics (SPH)

— Meshless Lagrangian method:

 Nodes (particles) are not connected

 Node position varies with time

— Models fluid and solid mechanics

— Nodes form a density field

 High-quality visualization:

1. Approximate density field

2. Marching Cubes

3. Render iso-surface SPH simulation nodes

Surface Visualization

Extract iso-surface via Marching Cubes

 Scalar field is sampled over 3D grid

 Marching Cubes [Lorensen87]

— Marches through a regular 3D grid of cells

1. Each MC cell spans 8 samples

2. Label corners as inside or outside iso-value

3. Eight in/out labels give 256 possible cases

4. Each case has a tessellation template

— Devised such that tessellations of adjacent cells match

— Vertices lie on lattice edges

 positioned using linear interpolation

— De-facto standard algorithm for this problem

1. For each cell:

Determine MC case and # vertices of template

2. Determine total # vertices and

output index of each MC cell's vertices

3. During vertex output: calculate actual positions

Example: Marching Cubes in 2D

Input: A scalar field

(gray=scalar field)

(red=iso-surface)

Upper left MC cell,

case = %0001 = 1

(pink=outside,blue=inside)

Upper left MC cell,

produce

template tessellation 1

Upper left MC cell,

calculate vertex positions

Upper left MC cell,

Output:

A line segment

 Data-parallel!

 Data-parallel!

Not trivially data-parallel!

Step 2 is Data Compaction & Expansion

We want to answer:

— How many triangles to draw?

— What is the mapping between input and output?

 Classic: At which output position j shall MC cell i write vertex k?

 Put differently: Which MC cell i and vertex k does output position j belong to?

 Data compaction & expansion provide answers:

— Data compaction:

 Extract all cells that produce geometry

— Data expansion:

 Each cell that produces geometry issues 3-15 vertices

Data Compaction and Expansion

 Problem definition

— We start with n input elements.

— Input element j produces

aj output elements.

— Discard all elements where aj = 0.

 An important algorithmic pattern!

— Trivial implementation in serial implementation (e.g. CPU).

— Non-trivial on data-parallel architectures (e.g. GPU)!

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 2 2 2 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 3 10 10 11 14

Input

Output

Input or Output-centric solutions

 Input-centric solution:

— For every input element

 Compute output offsets

 Scatter relevant input to output

 Typical serial solution and Data-Parallel Scan

 Output-centric solution:

— For every output element

 Determine input element from output index

 Histogram Pyramid (HistoPyramid): Reduction-based search structure

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 2 2 2 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 3 10 10 11 14

Input

Output

HistoPyramid: Stages of Algorithm

 Input is Baselevel

— For each input element, init with number of output elements

 Level Buildup

— Build further levels through reduction

 HistoPyramid Traversal

— For each output index:

Find corresponding input index (via HistoPyramid traversal)

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base level:

Input element index:

HistoPyramid Buildup

 Build further levels from baselevel

— Add two elements (reduction)

 Number of elements

halves each iteration

 log2 n iterations

— Each iteration half the size of

the previous iteration

— Data-Parallel algorithm

 Top element equals number of output elements (Step 2A)

 Data of all reduction levels: 2:1 HistoPyramid

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

3 0 3 1

3 4

7

Output Allocation

 Output size is known from top element of HP

 Allocate output

 Start one thread per output element

 Each thread knows its output index

 Now use HistoPyramid as

search structure for finding corresponding input element

HistoPyramid Traversal

 Each thread handles one output element

 key : variable, initially output index

 Binary Search through HP,

from top-level to base-level

— Reduction inputs x and y form

key ranges [0, x) and [x, x+y)

— Choose fitting range for key

— Subtract chosen range's start from key

 Note: For aj > 1, several output threads will end up at same

input element: key remainder is index within this set

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

3

0 3 1

3 4

7
key = 4

key=key-3=1

Key=key-0=1

key=key-0=1

Key=key-0=1

key remainder = 1

HistoPyramid Traversal

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

0 3 1

3 4

7

key=key-3=1

key=key-0=1

key=key-0=1

Key=key-0=1

Input pos=10, key remainder = 1

key = 4
0...2 3..6

0..2 3

X 0...2

0...1 2

0...6 Entry: key = Output position = 4

More observations on HP traversal

— Fully data-parallel algorithm (HP is read-only in traversal)

— Traversal steps/Data dependency: log2(n)

 Note: A pyramid has less latency

— Traversal path follows roughly a line

 Adjacent output elements

have very similar traversal paths

— Good cache coherence

 Large chunks of output elements

have identical paths from top

— Good for many-thread broadcast

— Some elements are never visited

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

3 0 3 1

3 4

7

key = 4

3 ≤ key, choose right, key=key-3=1

key ≤ 3, choose left

0 ≤ key, choose right, key=key-0=1

key ≤ 2, choose left

key = 1

Optimization 1: Discard some partial sums

 Observation:

 In traversal, after build-up has finished:

 Only the left nodes are important

 The right nodes needn't be read!

 We can discard all the right nodes

 Note: Number of all left nodes

equals number of

input elements

 Similarities to the Haar-transform!

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

3 0 3 1

3 4

7

key = 4

key=key-3=1

key =key-0=1

key=key-0=1

key=key-0=1

key = 1

Optimization 2: k-to-1 reductions

 Reduction does not have to be 2-to-1

 Example: 4-to-1 reduction is also possible

— Fewer levels of reductions -> fewer levels of traversal : log4(n)

— Better for hardware (can fetch up to 4 values at once,

reduce overall latency with fewer traversal steps)

— HPMC from 2007 uses 4-to-1 reductions in 2D (texture mipmap-like)

— Output extraction for consecutive elements

follows space-filling curve in base level

— Traversal: Adjacent HP levels accessed in mipmap-like fashion

— Excellent texture cache behaviour

HP5 (5-to-1 HistoPyramid)

 Combines two previous optimizations:

— Buildup: Every reduction adds five elements into one output, BUT:

 Only four of the reduction elements are stored!

 Fifth reduction element goes to computational sideband

— only acts as temporary data during reduction

 Traversal requires only first four elements

— Fifth element is directly deducted during top-down path.

 Advantage of HP5:

— Less data storage

— more efficient traversal

The HP5 reduction

 For each group of 5 elements in input stream or sideband:

— First 4 elements into HP5 level

— The sum of the 5 elements into sideband

— Done in parallel, level by level

— Last sideband: total number of elements

0 1 0 2 0 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 0 0 1

3 0 4 1 9

0 1 0 2 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 13 0 4 1

Input

Sideband 1

Sideband 2

HP5 Base-Level

HP5 Level 2

The HP5 traversal

 Given a key, traverse from top maintaining an index

— Fetch 4 adjacent values x, y, z, and w from HP5 level

— Build key ranges

 [0,x)

 [x,x+y)

 [x+y,x+y+z)

 [x+y+z,x+y+z+w)

 [x+y+z+w, ∞)

— Check range,

adjust key and index.

0 1 0 2 0 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 0 0 1

3 0 4 1

0 1 0 2 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0

Range 4: 3 ≤ key < ∞

index = 5*index + 4 = 14

key = key – 3 = 0

Range 2: 3 ≤ key < 7

index = 5*index + 2 = 2

key = key – 3 = 3

index = 0

key = 6

index = 14

key = 0

9

HistoPyramid performance

 Data compaction: CUDA 3.2 SDK, Tesla C2050

2 million input elements,

whereof N% retained

Scan Atomic

Ops

HP 4-to-1 HP 5-to-1

1% retained 0.70 ms 0.37 ms 0.34 ms 0.28 ms (2.5x)

10% retained 0.80 ms 3.04 ms 0.47 ms 0.38 ms (2.1x)

25% retained 0.81 ms 7.47 ms 0.63 ms 0.53 ms (1.53x)

50% retained 0.83 ms 14.89 ms 0.93 ms 0.81 ms (1.02x)

90% retained 0.85 ms 26.75 ms 1.40 ms 1.25 ms (0.60x)

HistoPyramid performance

 Data compaction: CUDA 3.2 SDK, Tesla C2050

2 million input elements,

whereof N% retained

Scan Atomic

Ops

HP 4-to-1 HP 5-to-1

1% retained 0.70 ms 0.37 ms 0.34 ms 0.28 ms (2.5x)

10% retained 0.80 ms 3.04 ms 0.47 ms 0.38 ms (2.1x)

25% retained 0.81 ms 7.47 ms 0.63 ms 0.53 ms (1.53x)

50% retained 0.83 ms 14.89 ms 0.93 ms 0.81 ms (1.02x)

90% retained 0.85 ms 26.75 ms 1.40 ms 1.25 ms (0.60x)

Explanation: HistoPyramids vs. Scan

 Scan is input-centric

— Efficiently computes output offset for all input elements

— Uses one thread per input elements to write output (scatter)

— For few relevant input elements:

 Redundantly computes output offsets for all input elements

 Starts superfluous threads for all, and many irrelevant, input elements

 HistoPyramids is output-centric

— Minimal amount of computations per input element

— Uses one thread per output element to write output (gather)

 But: requires HP traversal instead of a simple array look-up.

HistoPyramid-based Marching Cubes

 Recall the 3-step subdivision of marching cubes:

1. For each cell, determine case and find required # vertices

 Embarrassingly parallel

 Performed in CUDA

2. Find total number of vertices and output-input index mapping

 Build 5-to-1 HistoPyramid

 Performed in CUDA

3. For each vertex, calculate positions

 Embarrassingly parallel

 Performed directly in an OpenGL vertex shader

Step 1: Cell MC Case and Vertex Count

 Adjacent MC cells share corners

— Let a CUDA warp sweep through a 32x5x5 chunk of MC cells

 Process XZ-slices slice by slice:

— Check in/out state of 6 corners along Z,

(1 state per cell)

— exchange for cells processed by this thread

(2 states per cell)

— Pull results from previous slice,

(4 states per cell)

— Exchange results across warps (X-axis),

(8 states per cell)

— Use a 256-byte table to find number of vertices required for cell

 Recycles scalar field fetches and in-out classifications

— 32x5x5 MC cases in 33x6x6 fetches = 1.5 fetches per cell

Step 2: HistoPyramid 5-way Reduction

 HistoPyramid built level by level, from bottom to top

— Reduction kernel uses 160 threads (5 warps)

— All five warps fetch input sideband element as uint’s into shmem

 Adjacent shared memory writes, no bank conflicts

— Synchronize

— One single warp sums and stores results in global mem

 Each thread reads 5 adjacent elements from shared mem

— Fetches with stride = 5, no bank conflicts

 Output 4 elements to HistoPyramid Level (as uint4’s)

 Store sum of the 5 elements in HistoPyramid sideband (as single uint’s)

Optimizing the HistoPyramid Reduction

 Reduce global mem traffic:

— Sidebands are streamed through global mem between reductions

 Combine two reductions into one kernel

— Requires 800+160 uint’s of shmem (3.8 K), free of bank conflicts

 Combine three reductions into one kernel

— Requires 800+800 uint’s in shmem (6.3 K), free of bank conflicts

 Combine step 1 and three reductions into one kernel

— Each warp processes 32x5x5 = 800 MC cells, 4000 per block

— Shares shared mem with reduction, no extra shared mem required

 Reduce kernel invocation overhead

— Build the apex of the HistoPyramid using a single kernel

 Reduces the number of kernel invocations

Step 3: Extract output vertices

 Performed directly on the fly in OpenGL vertex shader:

— No input attributes

— gl_VertexID is used as key for HistoPyramid traversal

 Terminates in corresponding MC cell

 MC case gives template tessellation

 Key remainder specifies lattice edge for vertex in template tessellation

— Vertex position found by sampling scalar field at edge end points

 Uses OpenGL 4’s indirect draw

— Number of vertices to render fetched from buffer object

— No CPU-GPU synchronization needed

Results: MC Implementation Approaches

— NVIDIA Compute SDK’s MC sample uses CUDPP

— HPMC library [http://www.sintef.no/hpmc]:

HistoPyramids (4:1) in OpenGL GPGPU approach

— Our new development of HPMC uses CUDA HistoPyramid (5:1)

 Key characteristics:

— Most often: 0 triangles per cell

— Maximally: 5 triangles per cell (=15 vertices)

— On average: 0.05 - 0.15 triangles per cell

 Input (#cells) grows with cube of lattice grid resolution

 Output (#triangles) grows with square of lattice grid resolution

http://www.sintef.no/hpmc

Smooth Cayley (iso=0.5)

Triangles 445 522 (0.027 tris/cell)

NV SDK sample 72 fps (1201 mvps)

OpenGL HP4MC 113 fps (1868 mvps)

CUDA-OpenGL HP5MC 301 fps (4985 mvps)

Speedup 2.6x / 4.2x

Bumpy Cayley (iso=0.5)

Triangles 643 374 (0.039 tris/cell)

NV SDK sample 66 fps (1098 mvps)

OpenGL HP4MC 102 fps (1689 mvps)

CUDA-OpenGL HP5MC 242 fps (4006 mvps)

Speedup 2.4x / 3.6x

Superbumpy and layered Cayley (iso=0.5)

Triangles 3 036 608 (0.183 tris/cell)

NV SDK sample 34 fps (571 mvps)

OpenGL HP4MC 47 fps (774 mvps)

CUDA-OpenGL HP5MC 72 fps (1199 mvps)

Speedup 1.5x / 2.1x

Backpack (iso=0.4) (www.volvis.org)

Size 512x512x373 (187 mb)

Triangles 3 745 320 (0.039 tris/cell)

OpenGL HP4MC 13 fps (1291 mvps)

CUDA-OpenGL HP5MC 43 fps (4129 mvps)

Speedup 3.2x

Head aneuyrism (iso=0.4) (www.volvis.org)

Size 512x512x512 (256 mb)

Triangles 583 610 (0.004 tris/cell)

OpenGL HP4MC 15 fps (2034 mvps)

CUDA-OpenGL HP5MC 78 fps (10399 mvps)

Speedup 5.1x

Christmas tree (iso=0.05) (TU Wien)

Size 512x499x512 (250 mb)

Triangles 5 629 532 (0.043 tris/cell)

OpenGL HP4MC 10 fps (1358 mvps)

CUDA-OpenGL HP5MC 28 fps (3704 mvps)

Speedup 2.7x

CUHP5 Marching Cubes Showcase Video

http://www.youtube.com/watch?v=WS95KjUS_Ww

http://www.youtube.com/watch?v=WS95KjUS_Ww

Summary

 Our SPH visualization approach is based on Marching Cubes

— Requires high performance data compaction and expansion

— Output size is considerably smaller than input size

 5:1 HistoPyramid buildup and traversal

— Optimizations: 5:1 instead of 4:1, leave out last leaf, shmem

— Performance comparison for typical input-output ratio of 1-10%

 Implementing Marching Cubes

— Implementation details

— Performance

 Fastest Marching Cubes in the world ?

CUHP5 Marching Cubes

Thank you!

Questions?

Chris Dyken <christopher.dyken@sintef.no>

Gernot Ziegler <gziegler@nvidia.com>

CUHP5 Marching Cubes

BONUS SLIDES

Build a scalar field from the SPH nodes

We approximate using a quadratic tensor-product B-spline

— Simple and runs well on a GPU

— Spline space size controls blurring versus detail

— A quasi-interpolant builds the spline

 Contribution equals basis at position

— Scatter contributions using atomic adds

— No need to solve a linear system!

100x100x100 200x200x200 300x300x300

