

# GPU-accelerated data expansion for the Marching Cubes algorithm

San Jose (CA) | September 23rd, 2010 Christopher Dyken, SINTEF Norway Gernot Ziegler, NVIDIA UK



### Agenda

- Motivation & Background
- Data Compaction and Expansion
  - Histogram Pyramid algorithm and its variations
  - Optimizations and benchmark results
- Marching Cubes based on Histogram Pyramids
  - Mapping and performance considerations
  - Benchmark results
- Visualization of SPH simulation results
  - Videos



### Motivation: Fast SPH visualization

- Smoothed-particle Hydrodynamics (SPH)
  - Meshless Lagrangian method:
    - Nodes (particles) are not connected
    - Node position varies with time
  - Models fluid and solid mechanics
  - Nodes form a density field
- High-quality visualization:
  - 1. Approximate density field
  - 2. Marching Cubes
  - 3. Render iso-surface





SPH simulation nodes



# Extract iso-surface via Marching Cubes

- Scalar field is sampled over 3D grid
- Marching Cubes [Lorensen87]
  - Marches through a regular 3D grid of cells
    - 1. Each MC cell spans 8 samples
    - 2. Label corners as inside or outside iso-value
    - 3. Eight in/out labels give 256 possible cases
    - 4. Each case has a tessellation template
      - Devised such that tessellations of adjacent cells match
      - Vertices lie on lattice edges
        - positioned using linear interpolation
  - De-facto standard algorithm for this problem



# Example: Marching Cubes in 2D



Input: A scalar field (gray=scalar field) (red=iso-surface)



Upper left MC cell, case = %0001 = 1 (pink=outside,blue=inside)



Upper left MC cell, produce template tessellation 1



Upper left MC cell, calculate vertex positions



Upper left MC cell, Output: A line segment

 For each cell: Determine MC case and # vertices of template

✓ Data-parallel!

2. Determine total # vertices and output index of each MC cell's vertices

**Not trivially data-parallel!** 

3. During vertex output: calculate actual positions

✓ Data-parallel!



# Step 2 is Data Compaction & Expansion

- We want to answer:
  - How many triangles to draw?
  - What is the mapping between input and output?
    - Classic: At which output position j shall MC cell i write vertex k?
    - Put differently: Which MC cell i and vertex k does output position j belong to?
- Data compaction & expansion provide answers:
  - Data compaction:
    - Extract all cells that produce geometry
  - Data expansion:
    - Each cell that produces geometry issues 3-15 vertices



# Data Compaction and Expansion

- Problem definition
  - We start with n input elements.
  - Input element j produces  $a_i$  output elements.
  - Discard all elements where  $a_i = 0$ .
- An important algorithmic pattern!
  - Trivial implementation in serial implementation (e.g. CPU).
  - Non-trivial on data-parallel architectures (e.g. GPU)!





# Input or Output-centric solutions

- Input-centric solution:
  - For every input element
    - Compute output offsets
    - Scatter relevant input to output
    - Typical serial solution and <u>Data-Parallel Scan</u>
- Output-centric solution:
  - For every output element
    - Determine input element from output index
    - Histogram Pyramid (*HistoPyramid*): Reduction-based search structure





# HistoPyramid: Stages of Algorithm

- Input is Baselevel
  - For each input element, init with number of output elements



- Level Buildup
  - Build further levels through reduction
- HistoPyramid Traversal
  - For each output index:
    Find corresponding input index (via HistoPyramid traversal)



# HistoPyramid Buildup

- Build further levels from baselevel
  - Add two elements (reduction)
    - Number of elements halves each iteration
    - $\log_2 n$  iterations
      - Each iteration half the size of the previous iteration
  - Data-Parallel algorithm
- Top element equals number of output elements (Step 2A)
- Data of all reduction levels: 2:1 HistoPyramid





#### **Output Allocation**

- Output size is known from top element of HP
- Allocate output
- Start one thread per output element
- Each thread knows its output index
- Now use HistoPyramid as search structure for finding corresponding input element



# HistoPyramid Traversal

- Each thread handles one output element
- *key* : variable, initially output index
- Binary Search through HP, from top-level to base-level
  - Reduction inputs x and y form key ranges [0, x) and [x, x+y)
  - Choose fitting range for key
  - Subtract chosen range's start from key
- Note: For  $a_j > 1$ , several output threads will end up at same input element: key remainder is index within this set



# HistoPyramid Traversal



### More observations on HP traversal

- Fully data-parallel algorithm (HP is read-only in traversal)
- Traversal steps/Data dependency:  $log_2(n)$ 
  - Note: A pyramid has less latency
- Traversal path follows roughly a line
  - Adjacent output elements have very similar traversal paths
    - Good cache coherence
  - Large chunks of output elements have identical paths from top
    - Good for many-thread broadcast
- Some elements are never visited



key = 4



# Optimization 1: Discard some partial sums

- Observation:
  - In traversal, after build-up has finished:
    - Only the left nodes are important
    - The right nodes needn't be read!
- We can discard all the right nodes
  - Note: Number of all left nodes equals number of input elements
  - Similarities to the Haar-transform!



key = 4



### Optimization 2: k-to-1 reductions

- Reduction does not have to be 2-to-1
- Example: 4-to-1 reduction is also possible
  - Fewer levels of reductions -> fewer levels of traversal : log4(n)
  - Better for hardware (can fetch up to 4 values at once, reduce overall latency with fewer traversal steps)
- HPMC from 2007 uses 4-to-1 reductions in 2D (texture mipmap-like)
  - Output extraction for consecutive elements follows space-filling curve in base level
  - Traversal: Adjacent HP levels accessed in mipmap-like fashion
  - Excellent texture cache behaviour



# HP5 (5-to-1 HistoPyramid)

- Combines two previous optimizations:
  - Buildup: Every reduction adds five elements into one output, BUT:
    - Only four of the reduction elements are stored!
    - Fifth reduction element goes to computational sideband
      - only acts as temporary data during reduction
- Traversal requires only first four elements
  - Fifth element is directly deducted during top-down path.
- Advantage of HP5:
  - Less data storage
  - more efficient traversal



#### The HP5 reduction

- For each group of 5 elements in input stream or sideband:
  - First 4 elements into HP5 level
  - The sum of the 5 elements into sideband



(C) SINTER

#### The HP5 traversal

- Given a key, traverse from top maintaining an index
  - Fetch 4 adjacent values x, y, z, and w from HP5 level
  - Build key ranges
    - $\blacksquare$  [0,x)
    - **■** [x,x+y)
    - **■** [x+y,x+y+z)
    - **■** [x+y+z,x+y+z+w)
    - [X+y+Z+W, ∞)
  - Check range,
    adjust key and index.





# HistoPyramid performance

■ Data compaction: CUDA 3.2 SDK, Tesla C2050

| 2 million input elements, whereof N% retained | Scan    | Atomic<br>Ops | HP 4-to-1 | HP 5-to-1       |
|-----------------------------------------------|---------|---------------|-----------|-----------------|
| 1% retained                                   | 0.70 ms | 0.37 ms       | 0.34 ms   | 0.28 ms (2.5x)  |
| 10% retained                                  | 0.80 ms | 3.04 ms       | 0.47 ms   | 0.38 ms (2.1x)  |
| 25% retained                                  | 0.81 ms | 7.47 ms       | 0.63 ms   | 0.53 ms (1.53x) |
| 50% retained                                  | 0.83 ms | 14.89 ms      | 0.93 ms   | 0.81 ms (1.02x) |
| 90% retained                                  | 0.85 ms | 26.75 ms      | 1.40 ms   | 1.25 ms (0.60x) |

# HistoPyramid performance

■ Data compaction: CUDA 3.2 SDK, Tesla C2050

| 2 million input elements, whereof N% retained | Scan    | Atomic<br>Ops | HP 4-to-1 | HP 5-to-1       |
|-----------------------------------------------|---------|---------------|-----------|-----------------|
| 1% retained                                   | 0.70 ms | 0.37 ms       | 0.34 ms   | 0.28 ms (2.5x)  |
| 10% retained                                  | 0.80 ms | 3.04 ms       | 0.47 ms   | 0.38 ms (2.1x)  |
| 25% retained                                  | 0.81 ms | 7.47 ms       | 0.63 ms   | 0.53 ms (1.53x) |
| 50% retained                                  | 0.83 ms | 14.89 ms      | 0.93 ms   | 0.81 ms (1.02x) |
| 90% retained                                  | 0.85 ms | 26.75 ms      | 1.40 ms   | 1.25 ms (0.60x) |



# Explanation: HistoPyramids vs. Scan

- Scan is input-centric
  - Efficiently computes output offset for all input elements
  - Uses one thread per input elements to write output (scatter)
  - For few relevant input elements:
    - Redundantly computes output offsets for all input elements
    - Starts superfluous threads for all, and many irrelevant, input elements
- HistoPyramids is output-centric
  - Minimal amount of computations per input element
  - Uses one thread per output element to write output (gather)
    - But: requires HP traversal instead of a simple array look-up.



### HistoPyramid-based Marching Cubes

- Recall the 3-step subdivision of marching cubes:
  - 1. For each cell, determine case and find required # vertices
    - Embarrassingly parallel
    - Performed in CUDA
  - 2. Find total number of vertices and output-input index mapping
    - Build 5-to-1 HistoPyramid
    - Performed in CUDA
  - 3. For each vertex, calculate positions
    - Embarrassingly parallel
    - Performed directly in an OpenGL vertex shader



### Step 1: Cell MC Case and Vertex Count

- Adjacent MC cells share corners
  - Let a CUDA warp sweep through a 32x5x5 chunk of MC cells
    - Process XZ-slices slice by slice:
      - Check in/out state of 6 corners along Z,
        (1 state per cell)
      - exchange for cells processed by this thread
        (2 states per cell)
      - Pull results from previous slice,
        (4 states per cell)
      - Exchange results across warps (X-axis),
        (8 states per cell)
      - Use a 256-byte table to find number of vertices required for cell
- Recycles scalar field fetches and in-out classifications
  - 32x5x5 MC cases in 33x6x6 fetches = 1.5 fetches per cell





# Step 2: HistoPyramid 5-way Reduction

- HistoPyramid built level by level, from bottom to top
  - Reduction kernel uses 160 threads (5 warps)
  - All five warps fetch input sideband element as uint's into shmem
    - Adjacent shared memory writes, no bank conflicts
  - Synchronize
  - One single warp sums and stores results in global mem
    - Each thread reads 5 adjacent elements from shared mem
      - Fetches with stride = 5, no bank conflicts
    - Output 4 elements to HistoPyramid Level ( as uint4's )
    - Store sum of the 5 elements in HistoPyramid sideband (as single uint's)



# Optimizing the HistoPyramid Reduction

- Reduce global mem traffic:
  - Sidebands are streamed through global mem between reductions
    - Combine two reductions into one kernel
      - Requires 800+160 uint's of shmem (3.8 K), free of bank conflicts
    - Combine three reductions into one kernel
      - Requires 800+800 uint's in shmem (6.3 K), free of bank conflicts
    - Combine step 1 and three reductions into one kernel
      - Each warp processes 32x5x5 = 800 MC cells, 4000 per block
      - Shares shared mem with reduction, no extra shared mem required
- Reduce kernel invocation overhead
  - Build the apex of the HistoPyramid using a single kernel
    - Reduces the number of kernel invocations



### Step 3: Extract output vertices

- Performed directly on the fly in OpenGL vertex shader:
  - No input attributes
  - gl\_VertexID is used as key for HistoPyramid traversal
    - Terminates in corresponding MC cell
    - MC case gives template tessellation
    - Key remainder specifies lattice edge for vertex in template tessellation
  - Vertex position found by sampling scalar field at edge end points
- Uses OpenGL 4's indirect draw
  - Number of vertices to render fetched from buffer object
  - No CPU-GPU synchronization needed



# Results: MC Implementation Approaches

- NVIDIA Compute SDK's MC sample uses CUDPP
- HPMC library [http://www.sintef.no/hpmc]: HistoPyramids (4:1) in OpenGL GPGPU approach
- Our new development of HPMC uses CUDA HistoPyramid (5:1)
- Key characteristics:
  - Most often: 0 triangles per cell
  - Maximally: 5 triangles per cell (=15 vertices)
  - On average: 0.05 0.15 triangles per cell
    - Input (#cells) grows with cube of lattice grid resolution
    - Output (#triangles) grows with square of lattice grid resolution



# 256<sup>3</sup> 8bit performance (Tesla C2050)

#### Smooth Cayley (iso=0.5)

| Triangles         | 445 522 | (0.027 tris/cell) |  |
|-------------------|---------|-------------------|--|
| NV SDK sample     | 72 fps  | (1201 mvps)       |  |
| OpenGL HP4MC      | 113 fps | (1868 mvps)       |  |
| CUDA-OpenGL HP5MC | 301 fps | (4985 mvps)       |  |
| Speedup           | 2 6     | 2 6× / 1 2×       |  |



| Speedup           | 2.4x / 3.6x |                   |
|-------------------|-------------|-------------------|
| CUDA-OpenGL HP5MC | 242 fps     | (4006 mvps)       |
| OpenGL HP4MC      | 102 fps     | (1689 mvps)       |
| NV SDK sample     | 66 fps      | (1098 mvps)       |
| Triangles         | 643 374     | (0.039 tris/cell) |
|                   |             |                   |

#### Superbumpy and layered Cayley (iso=0.5)

| Triangles         | 3 036 608 | (0.183 tris/cell) |
|-------------------|-----------|-------------------|
| NV SDK sample     | 34 fps    | (571 mvps)        |
| OpenGL HP4MC      | 47 fps    | (774 mvps)        |
| CUDA-OpenGL HP5MC | 72 fps    | (1199 mvps)       |
| Speedup           | 1 Ev      | 12 14             |









# 512<sup>3</sup>-ish 16-bit performance (Tesla C2050)

#### Backpack (iso=0.4) (www.volvis.org)

| Speedup           |             | .2x               |
|-------------------|-------------|-------------------|
| CUDA-OpenGL HP5MC | 43 fps      | (4129 mvps)       |
| OpenGL HP4MC      | 13 fps      | (1291 mvps)       |
| Triangles         | 3 745 320   | (0.039 tris/cell) |
| Size              | 512x512x373 | (187 mb)          |

#### Head aneuyrism (iso=0.4) (www.volvis.org)

| Size              | 512x512x512 | (256 mb)          |
|-------------------|-------------|-------------------|
| Triangles         | 583 610     | (0.004 tris/cell) |
| OpenGL HP4MC      | 15 fps      | (2034 mvps)       |
| CUDA-OpenGL HP5MC | 78 fps      | (10399 mvps)      |
| Speedup           | 5.1x        |                   |

#### Christmas tree (iso=0.05) (TU Wien)

| Size              | 512x499x512 | (250 mb)          |
|-------------------|-------------|-------------------|
| Triangles         | 5 629 532   | (0.043 tris/cell) |
| OpenGL HP4MC      | 10 fps      | (1358 mvps)       |
| CUDA-OpenGL HP5MC | 28 fps      | (3704 mvps)       |
| Speedup           | 2           | <b>7</b> ~        |







# **CUHP5 Marching Cubes Showcase Video**

### Summary

- Our SPH visualization approach is based on Marching Cubes
  - Requires high performance data compaction and expansion
  - Output size is considerably smaller than input size
- 5:1 HistoPyramid buildup and traversal
  - Optimizations: 5:1 instead of 4:1, leave out last leaf, shmem
  - Performance comparison for typical input-output ratio of 1-10%
- Implementing Marching Cubes
  - Implementation details
  - Performance
- Fastest Marching Cubes in the world?



# **CUHP5 Marching Cubes**

Thank you!

**Questions?** 

Chris Dyken <christopher.dyken@sintef.no> Gernot Ziegler <gziegler@nvidia.com>



# **CUHP5 Marching Cubes**

**BONUS SLIDES** 



#### Build a scalar field from the SPH nodes

- We approximate using a quadratic tensor-product B-spline
  - Simple and runs well on a GPU
  - Spline space size controls blurring versus detail



- A quasi-interpolant builds the spline
  - Contribution equals basis at position
    - Scatter contributions using atomic adds
    - No need to solve a linear system!

