
GPU Technology Conference

From Brook to CUDA

Adding two vectors in C is pretty easy …

for (i=0; i<n; i++)
c[i] = a[i] + b[i];

On the GPU, it’s a wee bit more complicated …

A 50 Second Tutorial on GPU Programming
by Ian Buck

First, you’ll want to create a floating point PBuffer

Of course, there is

different code for

NVIDIA and ATI,

OpenGL and DirectX,

Windows, Linux, OS X
… naturally

You’ll want to create some floating point textures

Don’t forget to turn off

filtering otherwise

everything will run in

software mode

good luck finding that in the

documentation …

You’ll need to write

the “add” shader…

char singleFetch[] =
"!!ARBfp1.0\n"
"TEMP R0;\n"
"TEMP R1;\n"
"TEX R0, fragment.texcoord[0], texture[0], RECT;\n"
"TEX R1, fragment.texcoord[0], texture[1], RECT;\n"
"ADD result.color, R0, R1;\n"
"END\n";

Copy the data to the GPU …

glTexSubImage2D(GL_TEXTURE_RECTANGLE_EXT, 0,
0, 0, width, height, GLformat(ncomp[i]),
GL_FLOAT, t);

Render a shaded quad…

glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB,
pass_id[pass_idx]);

glBegin(GL_TRIANGLES);
glMultiTexCoord4fARB(GL_TEXTURE0_ARB,

f1[i].x, f2[i].y, 0.0f, 1.0f);
glVertex2f(-1.0f, 3.0f);
glMultiTexCoord4fARB(GL_TEXTURE0_ARB,

f1[i].x, f2[i].y, 0.0f, 1.0f);
glMultiTexCoord4fARB(GL_TEXTURE0_ARB+i,

f1[i].x, f2[i].y, 0.0f, 1.0f);
glVertex2f(-1.0f, -1.0f);
glMultiTexCoord4fARB(GL_TEXTURE0_ARB+i,

f1[i].x, f2[i].y, 0.0f, 1.0f);
glVertex2f(3.0f, -1.0f);
glEnd();
CHECK_GL();

Read back from the GPU …

glReadPixels (0, 0, width, height, GLformat(ncomp[i]),
GL_FLOAT, t);

Congratulations, you’ve successfully added two vectors

Boy…

that sucked.

History....

GPGPU in 2004

recent trends
G

F
L
O

P
S

multiplies per second
(observed peak)

NVIDIA NV30, 35, 40

ATI R300, 360, 420

Pentium 4

July 01 Jan 02 July 02 Jan 03 July 03 Jan 04

GPU history

translating transistors into performance

– 1.8x increase of transistors

– 20% decrease in clock rate

– 6.6x GFLOP speedup

Product Process Trans MHz
GFLOPS
(MUL)

Aug-02 GeForce FX5800 0.13 121M 500 8

Jan-03 GeForce FX5900 0.13 130M 475 20

Dec-03 GeForce 6800 0.13 222M 400 53

NVIDIA historicals

compute is cheap

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

courtesy of Bill Dally

•parallelism
•to keep 100s of ALUs per
chip busy

•shading is highly
parallel

•millions of fragments per
frame

...but bandwidth is expensive

90nm Chip
$200
1GHz

12mm

0.5mm

1 clock

courtesy of Bill Dally

•latency tolerance
•to cover 500 cycle remote
memory access time

•locality
•to match 20Tb/s ALU
bandwidth to ~100Gb/s chip
bandwidth

arithmetic intensity

90nm Chip
$200
1GHz

12mm

0.5mm

1 clock

•shading is compute intensive
•100s of floating point operations

•output 1 32-bit color value

•arithmetic intensity
•compute to bandwidth ratio

can we structure our computation in a similar way?

Brook language

C with streams

• streams

– collection of records requiring similar computation

• particle positions, voxels, FEM cell, …

Ray r<200>;

float3 velocityfield<100,100,100>;

– similar to arrays, but…

• index operations disallowed: position[i]

• read/write stream operators:

issuing compute geometry

Brook

Vertex Program

Rasterization

Fragment Program

Texture Memory

Brook Applications

ray-tracer

fft edge detect

segmentation
SAXPY

SGEMV

linear algebra

Legacy GPGPU

• Brook was great but...

– Lived within the constraints of graphics

• Constrained streaming programming model

• How can we improve GPUs to be better

computing platforms?

Challenges
• Graphics API

• Addressing modes

– Limited texture size/dimension

• Shader capabilities

– Limited outputs

• Instruction sets

– Integer & bit ops

• Communication limited

– Between pixels

– Scatter a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Registers

GeForce 7800 Pixel

Input Registers

Fragment Program

Output Registers

Constants

Texture

Registers

Thread Programs

Thread Program

Output Registers

Constants

Texture

Registers

Thread Number Features
• Millions of instructions

• Full Integer and Bit instructions

• No limits on branching, looping

• 1D, 2D, or 3D thread ID

allocation

Global Memory

Thread Program

Global Memory

Constants

Texture

Registers

Thread Number Features

• Fully general load/store to GPU

memory: Scatter/Gather

• Programmer flexibility on how

memory is accessed

• Untyped, not limited to fixed

texture types

• Pointer support

Shared Memory

Thread Program

Global Memory

Constants

Texture

Registers

Thread Number
Features

• Dedicated on-chip memory

• Shared between threads for

inter-thread communication

• Explicitly managed

• As fast as registers

Shared

Example Algorithm - Fluids

So the pressure for each particle is…

Pressure1 = P1 + P2 + P3 + P4

Pressure2 = P3 + P4 + P5 + P6

Pressure3 = P5 + P6 + P7 + P8

Pressure4 = P7 + P8 + P9 + P10

Pressure depends on

neighbors

Goal: Calculate PRESSURE in a fluid

Pressure = Sum of neighboring pressures

Pn’ = P1 + P2 + P3 + P4

Example Fluid Algorithm
CPU GPGPU

CUDA

GPU Computing

Multiple passes through

video memory

Single thread

out of cache

Program/Control

Data/Computation

Control

ALU

Cache DRAM

P1

P2

P3

P4

Pn’=P1+P2+P3+P4

ALU

Video

Memory

Control

ALU

Control

ALU

Control

ALU
P1,P2

P3,P4

P1,P2

P3,P4

P1,P2

P3,P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Thread
Execution
Manager

ALU

Control

ALU

Control

ALU

Control

ALU

DRAM

P1

P2

P3

P4

P5

Shared

Data

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Streaming vs. GPU Computing

GPGPU

CUDA

ALU

ALU

• Streaming

– Gather in, Restricted write

– Memory is far from ALU

– No inter-element communication

• CUDA

– More general data parallel model

– Full Scatter / Gather

– PDC brings the data closer to the ALU

– App decides how to decompose the problem across threads

– Share and communicate between threads to solve problems efficiently

Divergence in Parallel Computing

• Removing divergence pain from parallel programming

• SIMD Pain

– User required to SIMD-ify

– User suffers when computation goes divergent

• GPUs: Decouple execution width from programming model

– Threads can diverge freely

– Inefficiency only when granularity exceeds native machine width

– Hardware managed

– Managing divergence becomes performance optimization

– Scalable

CUDA: Threading in Data Parallel

• Threading in a data parallel world

– Operations drive execution, not data

• Users simply given thread id

– They decide what thread access which data element

– One thread = single data element or block or

variable or nothing….

– No need for accessors, views, or built-ins

Customizing Solutions
E

a
s
e

 o
f
A

d
o

p
ti
o

n

Generality

C for CUDA

Domain specific lang

Domain Libraries

Ported Applications

PTX

HW

Driver API

Ahead of the Curve

• GPUs are already at where CPU are going

• Task parallelism is short lived...

• Data parallel is the future

– Express a problem as data parallel....

– Maps automatically to a scalable architecture

• CUDA is defining that data parallel future

BACKUP

Lush, Rich WorldsStunning Graphics Realism

Core of the Definitive Gaming PlatformIncredible Physics Effects

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc.

Crysis © 2006 Crytek / Electronic Arts

Full Spectrum Warrior: Ten Hammers © 2006 Pandemic Studios, LLC. All rights reserved. © 2006 THQ

Inc. All rights reserved.

GPGPU Programming Model

OpenGL Program to Add
A and B

Vertex Program

Rasterization

Fragment Program

CPU Reads Texture
Memory for Results

“Programs” created with raster operation

Write answer to texture memory as a “color”

Read textures as input to OpenGL shader program

