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What are the Takeaways?

e At the systems software level ...
— How to support efficient communication between SMs
via barrier synchronization on the GPU - GPU Synchronization
e At the application level ...

— How to integrate the GPU synchronization capability into real
applications: FFT, dynamic programming, and bitonic sort

e From a performance and correctness perspective ...

— How to “improve” the performance of existing GPU-optimized
applications

— How to guarantee correctness and its associated cost
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Motivation

e Only task- or data-parallel algorithms map well to the GPU.

— No explicit support for communication between SMs,
i.e., inter-block data communication

e Consecutive kernel launches from CPU serve as an implicit
barrier synchronization for inter-block communication.
— How expensive is CPU implicit barrier synchronization?

— Would barrier synchronization on the GPU be better in support of
“more general-purpose computation”?

e To GPU synchronize or not GPU synchronize?
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Outline

e Background

— GTX 280 and CUDA Programming Maodel

e GPU Synchronization

— GPU Lock-Based Synchronization

— GPU Lock-Free Synchronization

e Experimental Results

e Conclusion & Future Work
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GTX 280 Architecture

On-chip memory
 Small sizes
* Fast access

Off-chip memory

Streaming Multiprocessor 30

Streaming Multiprocessor 2

Streaming Multiprocessor 1

= Shared Memory

T registers [ opas | Registers |
Processor 1 Processor 2 Processor 8 InstGL:]ci:;[ion
N Texture Cache
\
N Constant Cache

 Large size
* High access latency

Vv

Local and Global Memory

@ VirginiaTech

Invent the Future

SyNeRG?

synergy.cs.vt.edu



CUDA Programming Model

e CUDA: An extension of the C programming language

/Kernel: A global

host and executed
on device

blocks with each
block consisting of
multiple threads

function called fromw_‘
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Outline

e GPU Synchronization

— GPU Lock-Based Synchronization

— GPU Lock-Free Synchronization

e Experimental Results

e Conclusion & Future Work
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Types of Barrier Synchronization
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VS.

GPU Synchronization

Host Device Host Device
Kernel Launch Kernel Launch
Computation Computation
Kernel Launch Computation
Computation _
Retur/-n Barrier __Bw
W R Computation
Computation eturn
Return o
K_global_ void __kernel_func() \
for() { {for 01
__kernel_func<<<grid, block>>>(); Nafes Muned;
} _{gpu_sync(); |
}
\ )
] » ] @
W VirginiaTech SyNeRG?

Invent the Future

synergy.cs.vt.edu



GPU Lock-Based Synchronization
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GPU Lock-Free Synchronization
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Guaranteeing Correctness

GPU lock-based
synchronization
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Outline

e Experimental Results

e Conclusion & Future Work
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Experimental Set-Up

e Hardware

— Host
e 2.2-GHz Intel Core 2 Duo CPU
e 2 X2GB of DDR2 SDRAM

— Device
e GTX 280 video card
e 1024 MB device memory
e Software
— 64-bit Ubuntu GNU/Linux 8.04
— NVIDIA CUDA 2.3 SDK toolkit
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Measurements

Applications Synchronization Approach

Fast Fourier CPU synchronization
Transformation (FFT)

Smith-Waterman GPU lock-based synchronization

Bitonic sort GPU lock-free synchronization

e Execution time without _ threadfence()
e Execution time with __ threadfence()
e Synchronization time percentage (without _ threadfence())
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Execution Time without threadfence()

Kernel Execution Time vs. Number of Blocks in the Kernel
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Performance & Correctness:
Execution Time w/o _ threadfence()

e Performance Improvement (relative to existing GPU)
— FFT: 10% | Dynamic Programming: 26% | Bitonic Sort: 40%

e QOverall Performance Improvement (relative to CPU serial)
— FFT: 70x | Dynamic Programming: 13x | Bitonic Sort: 24x

e But...

— Our GPU barrier synchronizations run the risk that writes performed
before our gpu sync() barrier are not completed by the time the GPU
is released from the barrier.

— syncthreads() can only guarantee writes to shared memory and global
memory visible to threads of the same block, it cannot do so for
threads across different blocks.

— In practice, highly unlikely the above will ever happen given the
amount of time spent spinning at the barrier, but still possible. So, ...
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Execution Time with  threadfence()

Kernel Execution Time vs. Number of Blocks in the Kernel
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Percentage of Time Spent Synchronizing

Synchronization Time Percentages (without __threadfence())
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Percentages of the computation

FFT SWat Bitonic-Sort
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* 0% time to sync in FFT is lower than the other two algorithms

« Sync time percentages of SWat and bitonic sort are more than 50%
with CPU sync

* % time to GPU sync is lower than that of CPU implicit sync
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Profiling the Synchronization Time

e Micro-benchmark — Compute average of two floats 10,000

times
Elements computed Elements computed Elements computed
by Block #1 by Block #2 by Block #3
Array gk = — - —— === QOriginal value
Round #1 GPU sync -
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Decomposing Synchronization Time

e Ways to compute each time component
— Only kernel execution time can be recorded

— Indirect method
— Use GPU lock-based synchronization as the example

— Synchronization time can be represented as [ P S S5 =
— Times that can be recorded directly
Nt,. Kernel consisting of only atomicAdd
ton . Kernel consisting of only computation
tostE: Kernel with computation and _ syncthreads()
T g1 Kernel with GPU lock-based synchronization

el a1 Kernel with GPU lock-based
synchronization (__threadfence())
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Profile of Synchronization Time

e Results
140 e cOMputation L Eﬁq
= 3= =computation + syncthreads \ ' s
120 icADD —E
- sy atomic
£ 100 =it cOmputation + CPU implicit sync
) computation + GPU lock-based sync w/o threadfence
§ 30 e coOmputation + GPU lock-based sync w threadfence -
e
c
(=)
S 60 - —re =
>
o
9 L0 Nt
)
[
c
™
O

/( '%Ol;ﬂ'ged Iine]

e
I I 1 I I 1 I I 1 I I I I I I I I I 1 I I 1 I I 1 I I L e]

| Teom black lin
tco;q CPUSNYC|1 23456 7 8 9101112131415161718192021222324252627282930
| Number of blocks in the kernel

T = 11—
== == € =1

for 10,000 times execution

[ VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

K
N
N
L




Outline

e Conclusion & Future Work
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Conclusion

e At the systems software level ...

— How to support efficient communication between SMs
via barrier synchronization on the GPU - GPU Synchronization

e At the application level ...

— How to integrate the GPU synchronization capability into real
applications: FFT, dynamic programming, and bitonic sort

e From a performance and correctness perspective ...

— How to “improve” the performance of existing GPU-optimized
applications

— How to guarantee correctness and its associated cost

e  threadfence guarantees correctness but needs to be
optimized to support GPU synch. Is Fermi the answer?!
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Conclusion

e To GPU synchronize or not GPU synchronize?
— GTX 280/ Tesla C1060 / Tesla S1080: Do NOT GPU synchronize.
— Fermi? Likely GPU synchronize?

e Next steps?
— Efficient inter-block synchronization via NVIDIA Fermi
— Efficient inter-block synchronization in OpenCL
— Automated tool to transform CPU sync to GPU sync

e For more information

— “On the Robust Mapping of Dynamic Programming onto a Graphics
Processing Unit,” 15% Int’l Conf. on Parallel & Distributed Systems,
12/2009.

— “Inter-Block GPU Communication via Fast Barrier Synchronization,”
Technical Report TR-09-19, Computer Science, Virginia Tech,
10/2009.
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Yawn ...

e Where are the massive speed-ups and cool pictures?

@ Vil’giniaTeCh To GPU Synchronize or Not GPU Synchronize? SgNeRQ

invent the Future NVIDIA Booth, SC|09, November 2009 synérgy.cs.vt.edu



Electrostatic Potential for Molecular Dynamics

Viral Capsid
Processor + Execution Time Soeed-U
Optimization (seconds) . P
CPU Serial 36,360 -
GPU + Kernel Split
+ Multi-Level HCP 037 28,2 70X

e Visit the Supermicro booth, i.e., behind you, or go to
http://www.youtube.com/watch?v=zPBFenYg2Zk

Contact: Prof. Alexey Onufriev for info on the science!
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http://www.youtube.com/watch?v=zPBFenYg2Zk
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