To GPU Synchronize or Not GPU Synchronize?

Prof. Wu FENG

Departments.of Computer Science and Electrical & Computer Engineering

@ VirginiaTech SyNeRG?

Invent the Future synergy.cs.vt.edu

What are the Takeaways?

e At the systems software level ...
— How to support efficient communication between SMs
via barrier synchronization on the GPU - GPU Synchronization
e At the application level ...

— How to integrate the GPU synchronization capability into real
applications: FFT, dynamic programming, and bitonic sort

e From a performance and correctness perspective ...

— How to “improve” the performance of existing GPU-optimized
applications

— How to guarantee correctness and its associated cost

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Motivation

e Only task- or data-parallel algorithms map well to the GPU.

— No explicit support for communication between SMs,
i.e., inter-block data communication

e Consecutive kernel launches from CPU serve as an implicit
barrier synchronization for inter-block communication.
— How expensive is CPU implicit barrier synchronization?

— Would barrier synchronization on the GPU be better in support of
“more general-purpose computation”?

e To GPU synchronize or not GPU synchronize?

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Outline

e Background

— GTX 280 and CUDA Programming Maodel

e GPU Synchronization

— GPU Lock-Based Synchronization

— GPU Lock-Free Synchronization

e Experimental Results

e Conclusion & Future Work

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

GTX 280 Architecture

On-chip memory
 Small sizes
* Fast access

Off-chip memory

Streaming Multiprocessor 30

Streaming Multiprocessor 2

Streaming Multiprocessor 1

= Shared Memory

T registers [opas | Registers |
Processor 1 Processor 2 Processor 8 InstGL:]ci:;[ion
N Texture Cache
\
N Constant Cache

 Large size
* High access latency

Vv

Local and Global Memory

@ VirginiaTech

Invent the Future

SyNeRG?

synergy.cs.vt.edu

CUDA Programming Model

e CUDA: An extension of the C programming language

/Kernel: A global

host and executed
on device

blocks with each
block consisting of
multiple threads

function called fromw_‘

*Consists of multiple

Host Device
i Kernel 1 Grid]
Block Block Block |ssssuns Block
. #1 #2 #3 #N
[__syncthreads()
[—~—

eIntra-block sync is Grid 2
implemented with Kernel 2 2| Block Block Block |sssssus Block
__syncthreads() # i HE #N
eInter-block sync is
gl S e Barrier between
Qernel e / two kernel launches
[VirginiaTech SYNeRG?

Invent the Future

synergy.cs.vt.edu

Outline

e GPU Synchronization

— GPU Lock-Based Synchronization

— GPU Lock-Free Synchronization

e Experimental Results

e Conclusion & Future Work

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Types of Barrier Synchronization

CPU Synchronization

VS.

GPU Synchronization

Host Device Host Device
Kernel Launch Kernel Launch
Computation Computation
Kernel Launch Computation
Computation _
Retur/-n Barrier __Bw
W R Computation
Computation eturn
Return o
K_global_ void __kernel_func() \
for() { {for 01
__kernel_func<<<grid, block>>>(); Nafes Muned;
} _{gpu_sync(); |
}
\)
] »] @
W VirginiaTech SyNeRG?

Invent the Future

synergy.cs.vt.edu

GPU Lock-Based Synchronization

Block

Block Block
#3

Block

atomchNOde(l) latom'CMmAdd(l)

g_mutex

g_mutex == N o 2N Intra-block sync
== mutex == .
g_mutex/=Z N 9 mutex == N with _syncthreads()

BIOCk BIOCk BIOCk EEEEEENDR
#1 #3

e Time Profile

N>t

—

C { Block #1

—__ e

Block #1

e
ol]
"
L]
.....
"
LN]
Ll]
L]

1. atomicAdd()
Execute sequentially by different blocks

......

Block #N 2. g_mutex checking
Block #N Execute in parallel

--------------- 3. __syncthreads()

(

@ VirginiaTech

Invent the Future

L

Total synchronization time:

St |

SyNeRG?

synergy.cs.vt.edu

GPU Lock-Free Synchronization

Block Block Block Block

Intra-block sync
with __syncthreads()

Block #1

Intra-block sync
with __syncthreads()

1. Set Ain
T - N T e - 2. Check Ain
t .
ts|) Block #1) Block #2) Block#3 | Block #N . 3, Intra-blocksync
Cl ﬁﬁﬁ _____ ﬁ 4. Set Aout
tg . = =SyneiiCa | Eloci il 5. Check Aout
o NRETE BREZEE BRECEN THNT 6. Intra-block sync
teo | Blook#i] | Book 2] | slockss| ™ | Block] Note: Each step cam be
executed in parallel by
[Total synchronization time: _E%G} different blocks

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Guaranteeing Correctness

GPU lock-based
synchronization

—

__threadfence() __threadfence()
__threadfence() __threadfence()
Block Block Block | .veeeeuuns Block
#1 #2 #3 #N

atomicAdd(1) atond(l) latomiCMiCAdd(l)

2 2_
mutex == g_m u\tex ==N
g9_ Mnu[ﬂ/;: N

g_mutex

”
Q mutex == N

Block Block Block |.ieeeununn.
#1 #2 #3
__threadfence() __threadfence()
__threadfence() __threadfence()
JE——
Block Block Block Block

GPU lock-free ___
synchronization

Block #1

@ VirginiaTech

Invent the Future

SyNeRG?

synergy.cs.vt.edu

Outline

e Experimental Results

e Conclusion & Future Work

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Experimental Set-Up

e Hardware

— Host
e 2.2-GHz Intel Core 2 Duo CPU
e 2 X2GB of DDR2 SDRAM

— Device
e GTX 280 video card
e 1024 MB device memory
e Software
— 64-bit Ubuntu GNU/Linux 8.04
— NVIDIA CUDA 2.3 SDK toolkit

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Measurements

Applications Synchronization Approach

Fast Fourier CPU synchronization
Transformation (FFT)

Smith-Waterman GPU lock-based synchronization

Bitonic sort GPU lock-free synchronization

e Execution time without _ threadfence()
e Execution time with __ threadfence()
e Synchronization time percentage (without _ threadfence())

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Execution Time without threadfence()

Kernel Execution Time vs. Number of Blocks in the Kernel

2.4 35 ‘ Baseline: CPU Sync]

+ implicit svnc

E 2.2 X‘ . . \ik;ync
§ 20 % Relative Time Decreases dorne
i Algorithms SWat Bisort
L GPU lock-based sync 6.91% 8.77% 16.64%
g 12 GPU lock-free sync 10.63% 26.27% | 40.05% * e X

1.0

’ mlk Baseline is CPU synchronization pe 2030
FF 1 BITOTTIC SOT1T

285 - - Y . . -

- Computation + CPU implicit sync * Less time is needed with more
‘g' s Computation + GPU lock-based sync blOCkS In the kernel
g - == Computation + GPU lock-free sync
§ e | [Ml » Matrix filling time difference in FFT
E R Baseline: CPU : .
8 s S is smaller than the other two with
£ 105 TR e different sync approaches used
< 145 X e e g =X

9 10 11 12 13 14N1jn:ts)elr7o;3blljcisii1ﬂzli izr;:;le 26 27 28 29 30 ° GPU SynC haS a better performance
- han CPU implici nc, BUT ...
Smith-Waterman than CPU implicit sync, BU

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Performance & Correctness:
Execution Time w/o _ threadfence()

e Performance Improvement (relative to existing GPU)
— FFT: 10% | Dynamic Programming: 26% | Bitonic Sort: 40%

e QOverall Performance Improvement (relative to CPU serial)
— FFT: 70x | Dynamic Programming: 13x | Bitonic Sort: 24x

e But...

— Our GPU barrier synchronizations run the risk that writes performed
before our gpu sync() barrier are not completed by the time the GPU
is released from the barrier.

— syncthreads() can only guarantee writes to shared memory and global
memory visible to threads of the same block, it cannot do so for
threads across different blocks.

— In practice, highly unlikely the above will ever happen given the
amount of time spent spinning at the barrier, but still possible. So, ...

@ Vil’giniaTeCh To GPU Synchronize or Not GPU Synchronize? SgNeRQ

invent the Future NVIDIA Booth, SC|09, November 2009 synérgy.cs.vt.edu

Execution Time with threadfence()

Kernel Execution Time vs. Number of Blocks in the Kernel

4.5
24 Camnutation + CPLI imnlicit sunc

m) 3 N
T 22 e Relative Time Increases \f
E y Algorithms FFT SWat Bisort
§ ij GPU lock-based sync 16.88% 38.13% | 101.79% sync |
§ 2 GPU lock-free sync 13.74% 23.14% | 100.71%
+ 0 l& Baseline is CPU synchronization /8 59 30
FFT Bitonic sort
e Computation + CPU implicit sync . i . . -
7" Compatation s GPU Tock hased syne * Matrix filling time difference in FFT
g %0 — %= Computation + GPU lock-free sync Is smaller than the other two with
5 20 TG g different sync approaches used
g 20 {—— Ty ek x
ém (aseiine ?pt_;;::%' « With __ threadfence() called,
s 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 performance Of GPU SynC IS Worse
N-umberofblocksinthekernel than CPU |mp||C|t SynC
Smith-Waterman
W VirginiaTech SYNeRGY

Invent the Future synergy.cs.vt.edu

Percentage of Time Spent Synchronizing

Synchronization Time Percentages (without __threadfence())

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
o T, 3 1 2 3 1 2 3

and synchronization time

Percentages of the computation

FFT SWat Bitonic-Sort
1: CPU implicit sync 2: GPU lock-based sync
3: GPU lock-free sync B Computation B Synchronization

* 0% time to sync in FFT is lower than the other two algorithms

« Sync time percentages of SWat and bitonic sort are more than 50%
with CPU sync

* % time to GPU sync is lower than that of CPU implicit sync

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Profiling the Synchronization Time

e Micro-benchmark — Compute average of two floats 10,000

times
Elements computed Elements computed Elements computed
by Block #1 by Block #2 by Block #3
Array gk = — - —— === QOriginal value
Round #1 GPU sync -
Kegpel symu
Array —— —— —— ——— ———
Round #2
GPU syne =
Array - —— - SR ———. |Kegnel By
Round #3 /
[VirginiaTech SYNeRG?

Invent the Future

synergy.cs.vt.edu

Decomposing Synchronization Time

e Ways to compute each time component
— Only kernel execution time can be recorded

— Indirect method
— Use GPU lock-based synchronization as the example

— Synchronization time can be represented as [P S S5 =
— Times that can be recorded directly
Nt,. Kernel consisting of only atomicAdd
ton . Kernel consisting of only computation
tostE: Kernel with computation and _ syncthreads()
T g1 Kernel with GPU lock-based synchronization

el a1 Kernel with GPU lock-based
synchronization (__threadfence())

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Profile of Synchronization Time

e Results
140 e cOMputation L Eﬁq
= 3= =computation + syncthreads \ ' s
120 icADD —E
- sy atomic
£ 100 =it cOmputation + CPU implicit sync
) computation + GPU lock-based sync w/o threadfence
§ 30 e coOmputation + GPU lock-based sync w threadfence -
e
c
(=)
S 60 - —re =
>
o
9 L0 Nt
)
[
c
™
O

/('%Ol;ﬂ'ged Iine]

e
I I 1 I I 1 I I 1 I I I I I I I I I 1 I I 1 I I 1 I I L e]

| Teom black lin
tco;q CPUSNYC|1 23456 7 8 9101112131415161718192021222324252627282930
| Number of blocks in the kernel

T = 11—
== == € =1

for 10,000 times execution

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

K
N
N
L

Outline

e Conclusion & Future Work

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Conclusion

e At the systems software level ...

— How to support efficient communication between SMs
via barrier synchronization on the GPU - GPU Synchronization

e At the application level ...

— How to integrate the GPU synchronization capability into real
applications: FFT, dynamic programming, and bitonic sort

e From a performance and correctness perspective ...

— How to “improve” the performance of existing GPU-optimized
applications

— How to guarantee correctness and its associated cost

e threadfence guarantees correctness but needs to be
optimized to support GPU synch. Is Fermi the answer?!

@ Vil’giniaTeCh To GPU Synchronize or Not GPU Synchronize? SgNeRQ

invent the Future NVIDIA Booth, SC|09, November 2009 synérgy.cs.vt.edu

Conclusion

e To GPU synchronize or not GPU synchronize?
— GTX 280/ Tesla C1060 / Tesla S1080: Do NOT GPU synchronize.
— Fermi? Likely GPU synchronize?

e Next steps?
— Efficient inter-block synchronization via NVIDIA Fermi
— Efficient inter-block synchronization in OpenCL
— Automated tool to transform CPU sync to GPU sync

e For more information

— “On the Robust Mapping of Dynamic Programming onto a Graphics
Processing Unit,” 15% Int’l Conf. on Parallel & Distributed Systems,
12/2009.

— “Inter-Block GPU Communication via Fast Barrier Synchronization,”
Technical Report TR-09-19, Computer Science, Virginia Tech,
10/2009.

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

Yawn ...

e Where are the massive speed-ups and cool pictures?

@ Vil’giniaTeCh To GPU Synchronize or Not GPU Synchronize? SgNeRQ

invent the Future NVIDIA Booth, SC|09, November 2009 synérgy.cs.vt.edu

Electrostatic Potential for Molecular Dynamics

Viral Capsid
Processor + Execution Time Soeed-U
Optimization (seconds) . P
CPU Serial 36,360 -
GPU + Kernel Split
+ Multi-Level HCP 037 28,2 70X

e Visit the Supermicro booth, i.e., behind you, or go to
http://www.youtube.com/watch?v=zPBFenYg2Zk

Contact: Prof. Alexey Onufriev for info on the science!

[VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu

http://www.youtube.com/watch?v=zPBFenYg2Zk

Wu FENG, Ph.D.

feng@cs.vt.edu

SYNeRG? Laboratory

http://synergy.cs.vt.edu/

@ 5 O (\ http://www.mpiblast.org/

SUPERCOMPUTING http://WWW.green 500.0rg/
in SMALL SPACES

http://sss.cs.vt.edu/

