
Accelerating GPU computation through

mixed-precision methods

Michael Clark

Harvard-Smithsonian Center for Astrophysics

Harvard University

Outline

• Motivation

• Truncated Precision using CUDA

• Solving Linear Equations

• Conclusion

Motivation

• Scientific computation demands accuracy

• Double precision is the norm

• GPUs historically have have been poor at double precision

• No support until GT200 (x8 slower than single precision)

• Commonplace in GPGPU to use mixed precision methods

• Fermi brings the disparity down to x2 slower

• Do we still need mixed-precision methods?

Motivation

• Both raw flops and memory bandwidth outpaced CPUs

(CUDA Programming Guide)

Super Computer Comparison

BlueGene/P Tesla C2050
(traditional) (the future)

BlueGene/P* Tesla C2050*

BlueGene/P

Tesla C2050

32-bit Gflops 1030 13.6

64-bit Gflops 515 13.6

Watts 225 24

64-bit Gflop/Watt 2.3 0.57

memory b/w GBs-

1 144 / 115 13.6

64-bit flop/byte 3.6 / 4.5 1

(*per chip)

Motivation

• GPUs are more memory bound than traditional supercomputers

• As we go to the Exascale, it’s only going to get worse (for all architectures)

• Even with single and double flops parity, x2 in memory traffic

• For memory bound algorithms, single precision always x2 faster

• Many problems can be reformulated using mixed-precision methods

• No loss in precision for final result

• Large speedup because of reduced memory traffic

• Memory storage can be a limiting factor with GPU computing

• Truncated precision is a lossy compression allowing larger problems

Precision Truncation using CUDA

Native floating point and integer types in CUDA

• CUDA natively supports

• single and double precision floating point types

• e.g., float, double, double3, float4, etc.

• a variety of integer types

• char, short, int, long long int (8-bit thru 64-bit)

• CUDA does not support

• half type (fp16)

• 8-bit and 16-bit integer operations (char and shorts cost same as int)

Precision Truncation in CUDA

• Don’t require native operation support for truncated precision types

• Just need to be able load and save these types to reduce memory traffic

• Once in registers, we can convert to native types

• CUDA supports a variety of fast type conversions

• Single instruction intrinsics

• Texture units

Precision Truncation in CUDA - Half Precision

• Intrinsics for conversion fp16 <-> fp32

• half types are encoded as ushorts

• hardware accelerated conversion (single instruction)

• Need to get data into fp16 format

• Copy to 32-bit data to device, do setup kernel before actual computation

• Create fp16 on host (e.g., OpenEXR includes half precision class)

float __half2float(ushort x); half -> float

ushort __float2half_rn(float x); float -> half

http://www.openexr.com

Precision Truncation in CUDA - Texture Unit

• Load 8-bit / 16-bit integers through the texture unit

• “Free” conversion to fp32 (uints -> [0,1], ints -> [-1,1])

• Useful for fixed-point storage, but floating point compute

texture<short2, 1, cudaReadElementType> texRef; device declaration

short2 x = tex1Dfetch(texRef, index); kernel code

texture<short2, 1, cudaReadModeNormalizedFloat> texRef; device declaration

float2 x = tex1Dfetch(texRef, index); kernel code

One gotcha though...

• Need to be careful to maintain full memory coalescing

• Need a minimum of 32-bit word load per thread to saturate memory bandwidth

• e.g. Tesla C1060

• Need to use vectorized types (32-bit, 64-bit or 128-bit words)

float 77 GB/s

ushort (fp16) 68 GB/s

ushort2 (fp16x2) 77 GB/s

(Micikevicius)

Solving Systems of Linear Equations

Sparse-Matrix Vector Product (SpMV)

• Known to be a memory bound operation

• Single precision x2 faster than double precision

• e.g., Bell and Garland (SC09) - CUSP library

Mixed-Precision Solvers

• Main application for SpMV is solving linear systems A x = b

• Require solver tolerance beyond limit of single precision

• e.g., Use defect-correction (aka Richardson iteration, iterative refinement)

• Double precision can be done on CPU or GPU

• Can always check GPU gets correct answer

• Can achieve double precision accuracy twice as fast

• We know SpMV is bandwidth limited so how about half precision?

while (|rk|> ε) {

 rk = b - Axk

 pk = A-1rk

 xk+1 = xk + pk

}

Double precision

mat-vec and

accumulate

Inner single

precision solve

Case Study: Quantum ChromoDynamics

• QCD is the theory of the strong force that binds nucleons

• Grand challenge problem -> requires Exaflops for full solution

• Bulk of computation lies in solution to system of linear equations Ax = b

• A is the Dirac Operator - describes propagation of quarks

• A is a very large sparse matrix (108-109 degrees of freedom)

• Essentially a 1st order PDE acting on a 4 dimensional grid (spacetime)

• Need to be able to perform SpMV (apply A to a vector) as fast as possible

Case Study: Quantum ChromoDynamics

• Sparse matrix -> can use CUSP / CUSPARSE

• 2544 flops : 4680 bytes (single precision)

• Recall C2050 7.2 : 1 ratio - extremely bandwidth bound

• Matrix is highly structured

• Use knowledge of problem to write fast custom kernel

• From symmetry -> 1368 flops : 1440 bytes

• Flops are free - do extra computation to reduce memory traffic

• 1368 : 960 bytes still bandwidth bound

Case Study: Quantum ChromoDynamics

• SpMV performance results (GTX 480)

• Single Precision 208 Gflops

• Double Precision 65 Gflops

• Mixed-precision solver 3x faster

• Full double precision accuracy

• Single precision only 15% peak

Case Study: Quantum ChromoDynamics

• Use 16-bit precision

• Need 32-bit words for full bandwidth utilization

• Pack 1 complex number into a single 32-bit word

• Performance

• Single Precision 208 Gflops

• Double Precision 65 Gflops

• Half Precision 435 Gflops

• Mixed-precision solver 4.5x faster

(speedup not 6x because solver iterations increase)

http://arxiv.org/abs/0911.3191

Case Study: Quantum ChromoDynamics

• 2004: First 1 Tflops sustained for QCD (P. Vranas)

• 1 rack Blue Gene/L

• ~ $1M in 2005/2006

• 2010: 1 Tflops sustained, under your desk

• Dual-socket node with 4 GPUs

• ~ $13K (80x improvement in price/

performance)

… for problems that fit

 (1 rack BG/L has 512 GB RAM
vs. 12 GB for 4 C2050s)

Case Study: Multigrid

• Multigrid is known as an optimal method for solving elliptic PDEs (Ax = b)

• Constant time to solution regardless of condition number

• Iteration count scales linearly with volume

• How to use in mixed-precision?

• Wrap multigrid in a Krylov solver and use as a preconditioner

• Only require high precision for outer solver

• Preconditioner has low accuracy requirements

• Double-single, Double-half, etc. much faster than plain double

Case study: Multigrid

Increasing condition number

Tesla C1060

107 dof

Domenic Göddeke’s thesis

http://hdl.handle.net/2003/27243

Mixed-precision isn’t just for sparse systems

• Also useful when solving dense linear systems too (not bandwidth bound)

• E.g., Solving Ax=b through LU factorization

• Analogous to multigrid - LU is a preconditioner

MAGMA (http://icl.cs.utk.edu/magma/)

Advanced precision optimization

• Recall QCD performance
• Half 435 Gflops
• Single 202 Gflops
• Double 65 Gflops

Why is half > 2x faster than single?

Why is single > 2x faster than double?

L1 and L2 cache means super-linear speedup possible

(can fit more in cache with smaller datatypes)

Kernels often limited by available registers / shared

memory

•Registers are always 32-bit

•Shared memory only requires sizeof(type)

Increase amount of useful information held in fast memory

__shared__ ushort A[BLOCK_SIZE];

float B = __half2float(A[threadIdx.x]);

Other mixed-precision applications / algorithms

• MGEMM - mixed precision matrix-matrix multiplication (Olivares-Amaya et al)

• Partition matrix into large and small components

• large multiplications use double, small use single

• Low precision data summed into high precision accumulator

• e.g., reductions, force summations, signal processing

• Extended precision possible in CUDA (Lu, He and Luo)

• GPUs > order of magnitude faster at double-double, quad-double than CPUs

• Mixed-precision methods can make extended precision reasonable

Summary

• GPUs (and future HPC in general) are increasingly bandwidth bound

• Precision truncation can help alleviate memory traffic

• CUDA supports a variety of limited precision IO types

• half float (fp16), char, short

• Large speedups possible using mixed-precision

• Solving linear systems

• Not just for accelerating double-precision computation with single-precision

• 16-bit precision can speed up bandwidth bound problems

• Beyond double precision also sees large speedups

