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Motivation 

• Scientific computation demands accuracy 

• Double precision is the norm 

• GPUs historically have have been poor at double precision 

• No support until GT200 (x8 slower than single precision) 

• Commonplace in GPGPU to use mixed precision methods 

• Fermi brings the disparity down to x2 slower 

• Do we still need mixed-precision methods? 



Motivation 

• Both raw flops and memory bandwidth outpaced CPUs 

(CUDA Programming Guide) 



Super Computer Comparison 

BlueGene/P Tesla C2050 
(traditional) (the future) 



BlueGene/P* Tesla C2050* 

BlueGene/P 

Tesla C2050 

32-bit Gflops 1030 13.6 

64-bit Gflops 515 13.6 

Watts 225 24 

64-bit Gflop/Watt 2.3 0.57 

memory b/w GBs-

1 144 / 115 13.6 

64-bit flop/byte 3.6 / 4.5 1 

(*per chip) 



Motivation 

• GPUs are more memory bound than traditional supercomputers 

• As we go to the Exascale, it’s only going to get worse (for all architectures) 

• Even with single and double flops parity, x2 in memory traffic 

• For memory bound algorithms, single precision always x2 faster 

• Many problems can be reformulated using mixed-precision methods 

• No loss in precision for final result 

• Large speedup because of reduced memory traffic 

• Memory storage can be a limiting factor with GPU computing 

• Truncated precision is a lossy compression allowing larger problems 



Precision Truncation using CUDA 



Native floating point and integer types in CUDA 

• CUDA natively supports  

• single and double precision floating point types 

• e.g., float, double, double3, float4, etc. 

• a variety of integer types 

• char, short, int, long long int (8-bit thru 64-bit) 

• CUDA does not support 

• half type (fp16) 

• 8-bit and 16-bit integer operations (char and shorts cost same as int) 



Precision Truncation in CUDA 

• Don’t require native operation support for truncated precision types 

• Just need to be able load and save these types to reduce memory traffic 

• Once in registers, we can convert to native types 

• CUDA supports a variety of fast type conversions 

• Single instruction intrinsics  

• Texture units 



Precision Truncation in CUDA - Half Precision 

• Intrinsics for conversion fp16 <-> fp32 

 

• half types are encoded as ushorts 

• hardware accelerated conversion (single instruction) 

• Need to get data into fp16 format 

• Copy to 32-bit data to device, do setup kernel before actual computation 

• Create fp16 on host (e.g., OpenEXR includes half precision class) 

float __half2float(ushort x);                          half -> float 

ushort __float2half_rn(float x);                       float -> half 

http://www.openexr.com 



Precision Truncation in CUDA - Texture Unit 

• Load 8-bit / 16-bit integers through the texture unit 

 

• “Free” conversion to fp32 (uints -> [0,1], ints -> [-1,1]) 

 

 

• Useful for fixed-point storage, but floating point compute 

texture<short2, 1, cudaReadElementType> texRef;             device declaration 

short2 x = tex1Dfetch(texRef, index);                       kernel code 

texture<short2, 1, cudaReadModeNormalizedFloat> texRef;     device declaration 

float2 x = tex1Dfetch(texRef, index);                       kernel code 



One gotcha though... 

• Need to be careful to maintain full memory coalescing 

• Need a minimum of 32-bit word load per thread to saturate memory bandwidth 

• e.g. Tesla C1060 

 

 

• Need to use vectorized types (32-bit, 64-bit or 128-bit words) 

float 77 GB/s 

ushort (fp16) 68 GB/s 

ushort2 (fp16x2) 77 GB/s 

(Micikevicius) 



Solving Systems of Linear Equations 



Sparse-Matrix Vector Product (SpMV) 

• Known to be a memory bound operation 

• Single precision x2 faster than double precision 

• e.g., Bell and Garland (SC09) - CUSP library 



Mixed-Precision Solvers 

• Main application for SpMV is solving linear systems  A x = b 

• Require solver tolerance beyond limit of single precision 

• e.g., Use defect-correction (aka Richardson iteration, iterative refinement) 

 

 

 

 

• Double precision can be done on CPU or GPU 

• Can always check GPU gets correct answer 

• Can achieve double precision accuracy twice as fast 

• We know SpMV is bandwidth limited so how about half precision? 

while (|rk|> ε) { 

 rk = b - Axk 

 pk = A-1rk 

 xk+1 = xk + pk 

} 

Double precision 

mat-vec and  

accumulate 

Inner single  

precision solve 



Case Study: Quantum ChromoDynamics 

• QCD is the theory of the strong force that binds nucleons 

• Grand challenge problem -> requires Exaflops for full solution 

• Bulk of computation lies in solution to system of linear equations   Ax = b 

• A is the Dirac Operator - describes propagation of quarks 

• A is a very large sparse matrix (108-109 degrees of freedom) 

• Essentially a 1st order PDE acting on a 4 dimensional grid (spacetime)  

• Need to be able to perform SpMV (apply A to a vector) as fast as possible 





Case Study: Quantum ChromoDynamics 

• Sparse matrix -> can use CUSP / CUSPARSE 

• 2544 flops : 4680 bytes (single precision) 

• Recall C2050 7.2 : 1 ratio - extremely bandwidth bound 

• Matrix is highly structured 

• Use knowledge of problem to write fast custom kernel 

• From symmetry -> 1368 flops : 1440 bytes 

• Flops are free - do extra computation to reduce memory traffic 

• 1368 : 960 bytes     still bandwidth bound 



Case Study: Quantum ChromoDynamics 

• SpMV performance results (GTX 480) 

• Single Precision 208 Gflops 

• Double Precision 65 Gflops 

• Mixed-precision solver 3x faster 

• Full double precision accuracy 

• Single precision only 15% peak 



Case Study: Quantum ChromoDynamics 

• Use 16-bit precision 

• Need 32-bit words for full bandwidth utilization 

• Pack 1 complex number into a single 32-bit word 

• Performance 

• Single Precision 208 Gflops 

• Double Precision 65 Gflops 

• Half Precision 435 Gflops 

• Mixed-precision solver 4.5x faster 

 

(speedup not 6x because solver iterations increase) 

http://arxiv.org/abs/0911.3191 



Case Study: Quantum ChromoDynamics 

• 2004: First 1 Tflops sustained for QCD (P. Vranas) 

• 1 rack Blue Gene/L 

• ~ $1M in 2005/2006 

• 2010: 1 Tflops sustained, under your desk 

• Dual-socket node with 4 GPUs 

• ~ $13K (80x improvement in price/ 

performance) 

… for problems that fit 

 (1 rack BG/L has 512 GB RAM 
vs. 12 GB for 4 C2050s) 



Case Study: Multigrid 

• Multigrid is known as an optimal method for solving elliptic PDEs (Ax = b) 

• Constant time to solution regardless of condition number 

• Iteration count scales linearly with volume 

• How to use in mixed-precision? 

• Wrap multigrid in a Krylov solver and use as a preconditioner 

• Only require high precision for outer solver 

• Preconditioner has low accuracy requirements  

• Double-single, Double-half, etc. much faster than plain double 



Case study: Multigrid 

Increasing condition number 

Tesla C1060 

107 dof 

Domenic Göddeke’s thesis 

http://hdl.handle.net/2003/27243 



Mixed-precision isn’t just for sparse systems 

• Also useful when solving dense linear systems too (not bandwidth bound) 

• E.g., Solving Ax=b through LU factorization  

• Analogous to multigrid - LU is a preconditioner 

MAGMA (http://icl.cs.utk.edu/magma/) 



Advanced precision optimization 

• Recall QCD performance 
• Half 435 Gflops 
• Single 202 Gflops 
• Double 65 Gflops 

Why is half > 2x faster than single? 

Why is single > 2x faster than double? 

L1 and L2 cache means super-linear speedup possible 

(can fit more in cache with smaller datatypes) 

Kernels often limited by available registers / shared 

memory 

•Registers are always 32-bit 

•Shared memory only requires sizeof(type) 

Increase amount of useful information held in fast memory 

__shared__ ushort A[BLOCK_SIZE]; 

float B = __half2float(A[threadIdx.x]); 



Other mixed-precision applications / algorithms 

• MGEMM - mixed precision matrix-matrix multiplication (Olivares-Amaya et al) 

• Partition matrix into large and small components 

• large multiplications use double, small use single 

• Low precision data summed into high precision accumulator 

• e.g., reductions, force summations, signal processing 

• Extended precision possible in CUDA (Lu, He and Luo) 

• GPUs > order of magnitude faster at double-double, quad-double than CPUs 

• Mixed-precision methods can make extended precision reasonable 



Summary 

• GPUs (and future HPC in general) are increasingly bandwidth bound 

• Precision truncation can help alleviate memory traffic 

•  CUDA supports a variety of limited precision IO types 

• half float (fp16), char, short 

•  Large speedups possible using mixed-precision 

• Solving linear systems 

• Not just for accelerating double-precision computation with single-precision 

• 16-bit precision can speed up bandwidth bound problems 

• Beyond double precision also sees large speedups 


