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 Computational Quantum Chemistry
 General Atomic Molecular Electronic Structure Systems -GAMESS
 Electron Repulsion Integral (ERI) Problem
 Our Approach
 CUDA Implementation

 Optimizations

 Automatically generated code
 Performance Results
 Future Goals
 Questions & Discussion



 Use computational methods to solve the electronic structure and 
properties of  molecules.

 Finds utility in the design of new drugs and materials 
 Underlying theory is based on Quantum Mechanics –Schrodinger 

wave equation
 Properties calculated 
 Energies

 Electronic charge distribution

 Dipole moments, vibrational frequencies. 

 Methods employed
 Ab initio Methods ( Solve from first principles) 

 Density Functional Theory (DFT)

 Semi-empirical methods 

 Molecular Mechanics (MM)



 Ab initio molecular quantum chemistry software
 USDOE “SciDAC Basic Energy Sciences” (BES) application
 Serial and parallel versions for several methods
 In brief, GAMESS can compute
 Self Consistent Field (SCF) wave functions  - RHF, ROHF, UHF, GVB, 

and  MCSCF using the Hartree-Fock method

 Correlation corrections to SCF using  configuration interaction  (CI), 
second order perturbation theory, and coupled cluster theories (CC)

 Density Functional Theory approximations

Reference:"Advances in electronic structure theory: GAMESS a decade later" M.S.Gordon, M.W.Schmidt pp. 
1167-1189, in "Theory and Applications of Computational Chemistry: the first forty years" C.E.Dykstra, 
G.Frenking, K.S.Kim, G.E.Scuseria (editors), Elsevier, Amsterdam, 2005.



 Molecules are made of atoms and atoms have electrons
 Electrons live in shells – s, p, d, f, g, h
 Shells are made of sub-shells – all have the same angular 

momentum (L)
 Shells are represented using the mathematical functions
 Gaussian functions are taken as standard primitive functions (S.F. Boys)



 x, y, z – Cartesian center

 ax, ay, az – Angular momenta components; L = ax + ay + az

 is the exponent

 Shells with low angular momentum are typically contracted
▪

▪ K is the contraction coefficient. Dk’s are the contraction coefficients
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Molecule Specification
•List of Atoms ( Atomic Numbers Z) 

•List of Nuclear Coordinates (R)
• Number of electrons 

•List of Primitive Functions, exponents 
• Number  of contractions 

Form the basis functions (M)

ERI
Two Electron Repulsion Integral 

(ij|kl)
O(M3) to O(M4)

Hcore 

(one-electron integrals)
Kinetic Energy Integrals (T)

Nuclear Attraction 
Integrals (V)

cheap one-time 
operation

•Required  in every iteration 
•Very Expensive operation 
•Stored procedures not scalable
•Re-compute in every iteration 
•Good target for GPU

Initial guess of the wave 
function 

Obtain the guess at the 
Density Matrix (P) 

O(M2)

Form the Fock Matrix
F = Hcore + G 

G – Matrix
O(M2)

G = [(ij|kl) – ½(ik|jl)]*P 

Convergence 

Checks

Stop

Transformations
F’ = X’FX

C’  Diagonalize(F’)
C XC’
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 Four-center two-electron repulsion 
integral  



 Major computational step in both Ab 
initio and DFT methods

 Complexity is O(M3)-O(M4), M is the 
number of basis functions (Gaussian 
functions are standard) 

 Rys Quadrature – proposed by Dupius, 
Rys, King (DRK)

 Numerical Gaussian quadrature based on a 
set of orthogonal Rys polynomials

 Numerically stable, low memory foot print

 Amenable for GPUs and architectures with 
smaller caches
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ERI Inputs 

shell a shell b shell c shell d

bra ket

CGTO CGTO CGTO CGTO

x y z

ax ay az

Contraction 
Coefficients 

Gaussian Exponents

Relevant to computations

Lower order functions are 
typically contracted 



 Two electron integral is expressed as  
where  ,                                     and 

 X depends on exponents, centers and is independent of angular 
momenta

 , where PL(t) is polynomial of degree L in t2. Evaluated 
using N-point quadrature and  hence                                where

 Using separation of variables, PL(t) which is integral over dr1dr2 , can be 
written as a product of three (2-D) integrals over dx1dx2, dr1dr2,  dz1dz2

 and 
 Ix, Iy, Iz are computed using recurrence and transfer relations
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Rys Quadrature Algorithm
for all l do

for all k do
for all j do

for all i do

end for
end for

end for
end for
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 Summation over the roots over all the intermediate 2-D integrals

 floating point operations =

 Recurrence, transfer and roots have predictable memory access 
patterns, fewer flops. Quadrature step is the main focus here.
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 Example: (dd|dd) ERI block
 La = Lb = Lc = Ld = 2

 Number of roots, N = 5

 ERI size = 64 = 1296 elements 

 Intermediate 2-D integrals Ix, Iy, Iz size:34*5 = 245

Possible Optimizations 
 ERI computations are memory bound, hence optimize memory accesses

 Intermediate 2-D integrals are reused multiple times to construct 
different ERI elements.

 Generate the different combinations automatically



SM – Streaming Multiprocessor  

SP – Scalar Processor Core 

SFU – Special Functional Unit   

DP – Double Precision Unit 

SP5

Registers

SP6

Registers

SP7

Registers

SP8

Registers

SFU

DP unit

Shared Memory 

Constant Cache

Texture Cache

Multithreaded Instruction Unit

Device Memory

Symmetric Multiprocessor  1
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 Since 2-D integrals are reused multiple times, load them into 
shared memory
 However, shared memory access , synchronization limited to thread block 

boundaries

 ERI block should be mapped  onto a single thread block

 Is it possible to map all the ERI elements to individual threads in a block  ? 

 The answer depends on the ERI block under consideration

 For a (dd|dd) ERI block, ERI size = 64 = 1296 elements
 Maximum of 512 or 768 threads per block

 Map i, j, k indices corresponding to the three shells of the block to unique 
threads and iterate over the l index

 Thread blocks are three dimensional, the mapping of i, j, k is natural

 For (ff|ff) ERI block, ERI size = 104 = 1000 elements
 Map i, j indices corresponding to the first two shells of the block to unique 

threads and iterate over the l index



CUDA Rys quadrature: i, j, k mapping
# map threads to ERI elements
I = threadIdx.x, j = threadIdx.y, k = threadIdx.z

# arrays LX, LY, LZ map functions  to exponents
(ix, iy, iz)  (LX[i], LY[i], LZ[i])
(jx, jy, jz)  (LX[j], LY[j], LZ[j])
(kx, ky, kz) (LX[k], LY[k], LZ[k])

for all l do
syncthreads
## load the 2-D  integrals to shmem
Ix, shmem Ix(:,:,:,LX[l])
Iy, shmemIy(:,:,:,LX[l])
Iz, shmem Iz(:,:,:,LX[l])
syncthreads

I(i, j, k, l) 
end for

, , ,x shmem y shmem z shmem

N

I I I

Further optimizations
 (dd|dd) case
 I{x,y,z},shmem = 5(33) = 135 

elements per 2-D block
 Across iterations, some of the 

elements in shared memory can 
be reused 

d-shell
dx

2, dy
2, dz

2, dxy, dxz, dyz  18 loads
dy

2, dz
2, dyz, dxy, dxz, dx

2
 13 loads

Ix 0* 0 0 1* 1 2*

Iy 2* 0* 1* 1 0* 0

Iz 0* 2* 1* 0* 1* 0*



CUDA Rys quadrature: i, j  mapping
# map threads to ERI elements
I = threadIdx.x, j = threadIdx.y

# arrays LX, LY, LZ map functions  to exponents
(ix, iy, iz)  (LX[i], LY[i], LZ[i])
(jx, jy, jz)  (LX[j], LY[j], LZ[j])
for all klz-block do

syncthreads
Iz, shmem Iz(:,:,LZ[k],LZ[l])
## load 2-D  integrals to shmem
for all klxy klz-block do
syncthreads
Ix, shmem Ix(:, :, LX[k], LX[l])
Iy, shmem Iy(:, :, LY[k], LX[l])
syncthreads
I(i, j, k, l) 
end for

end for

, , ,x shmem y shmem z shmem

N

I I I

Further optimizations
 (ff|ff) case
 I{x,y,z},shmem = 7(42) = 112 

elements  per 2-D block
 10 functions in the f-shell
 Reorder them ( next slide)
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 Number of registers per thread, shared memory per thread 
block limits the thread blocks that can be assigned per SM

 Loops implemented directly result in high register usage

 Explicitly unroll the loops. How ?  Manually  it’s tedious and 
error-prone

 Use  a common template and generate all the cases 

 Python based Cheetah template engine is used- reuse 
existing Python utilities and  program support modules 
easily.



ERI blocks flop count GFLOPSSP
3 GFLOPSDP

4

map5i jk map5i j map5i jk map5i j

(gg|gg) 2000 2733750000 n/a 45.23 n/a 22.55

(gg|f f ) 4000 2160000000 n/a 34.42 n/a 15.32

(f f |gg) 4000 2160000000 n/a 30.91 n/a 14.11

(gg|dd) 10000 1701000000 n/a 43.08 n/a 21.05

(gg|pp) 40000 1458000000 n/a 36.53 n/a 17.08

(pp|gg) 40000 1458000000 34.23 6.93 18.20 5.38

(f f |f f ) 10000 2100000000 n/a 40.43 n/a 20.11

(f f |dd) 20000 1296000000 n/a 37.54 n/a 18.29

(dd|f f ) 20000 1296000000 37.69 23.32 16.53 15.04

(f f |pp) 80000 1080000000 27.43 31.46 15.23 17.05

(pp|f f ) 80000 1080000000 32.23 6.21 17.45 4.84

(dd|dd) 60000 1166400000 31.10 20.17 16.38 13.67

 ERIs with odd number of roots have 
maximum performance  over the 
even roots 
 Odd roots  - (gg|gg), (gg|dd), 

and (ff|ff) cases
 Even roots – (ff|gg), (gg|ff), 

and (dd|gg)

 The difference is as high as 25%

 Difference in the single and double 
precision is roughly a factor of two

 Larger ijk mapping  perform better 
than the ij mappings 



ERI blocks flop count GFLOPSSP
3 GFLOPSDP

4

GTX 275 Tesla GTX 275 Tesla

(gg|gg) 2000 2733750000 45.23 55.97 22.55 27.34

(gg|f f ) 4000 2160000000 34.42 42.07 15.32 18.67

( f f |gg) 4000 2160000000 30.91 37.70 14.11 17.19

(gg|dd) 10000 1701000000 43.08 53.39 21.05 25.34

(dd |gg) 10000 1701000000 23.63 24.03 16.35 29.88

(gg|pp) 40000 1458000000 36.53 45.15 17.08 20.65

(pp|gg) 40000 1458000000 34.23 42.42 18.20 22.09

( f f |f f ) 10000 2100000000 40.43 50.19 20.11 24.46

( f f |dd) 20000 1296000000 37.54 46.15 18.29 22.44

(dd |f f ) 20000 1296000000 37.69 45.71 16.53 19.71

( f f |pp) 80000 1080000000 31.46 39.38 17.05 20.10

( pp|f f ) 80000 1080000000 32.23 40.33 17.45 21.46

(dd |dd) 60000 1166400000 31.10 38.74 16.38 19.78

Inferences

 Performance depends on the ERI 
class under evaluation and hence 
also on the mapping ( i,j,k vs. i,j)

 Difference between single and 
double precision performance is 
roughly a factor of two

 Difference between the GTX and 
Tesla T is roughly 30% ( consistent 
with the clock speeds)

 In terms of register and shared 
memory usage both are identical



 Rysq quadrature implementation performance results are comparable or 
better than DGEMV BLAS routines. 

 Some more improvements are possible by caching (texture, constant) 
and also by more aggressive memory reuse possibly at the expense of re-
computation

 Very easy to generate the possible ERI shell combinations using a single 
template

 Explicit unrolling can be controlled at different levels such as shells, roots  
to test for performance improvements

 Being developed as a standalone library and application agnostic



 ERIs are 4-dimensional, hence it is very expensive to transfer them to the 
host memory after computation. 

 Fock matrix is 2-dimensional. So, consume the ERI’s as they are formed 
to build the Fock matrix

 Handle the contracted ERI’s

 Mixed precision support

 A complete working SCF algorithm
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