
Andrey Asadchev
Jacob Felder

Veerendra Allada
Dr. Mark S Gordon
Dr. Theresa Windus

Dr. Brett Bode

GPU Technology Conference , NVIDIA , San Jose, 2009

 Computational Quantum Chemistry
 General Atomic Molecular Electronic Structure Systems -GAMESS
 Electron Repulsion Integral (ERI) Problem
 Our Approach
 CUDA Implementation

 Optimizations

 Automatically generated code
 Performance Results
 Future Goals
 Questions & Discussion

 Use computational methods to solve the electronic structure and
properties of molecules.

 Finds utility in the design of new drugs and materials
 Underlying theory is based on Quantum Mechanics –Schrodinger

wave equation
 Properties calculated
 Energies

 Electronic charge distribution

 Dipole moments, vibrational frequencies.

 Methods employed
 Ab initio Methods (Solve from first principles)

 Density Functional Theory (DFT)

 Semi-empirical methods

 Molecular Mechanics (MM)

 Ab initio molecular quantum chemistry software
 USDOE “SciDAC Basic Energy Sciences” (BES) application
 Serial and parallel versions for several methods
 In brief, GAMESS can compute
 Self Consistent Field (SCF) wave functions - RHF, ROHF, UHF, GVB,

and MCSCF using the Hartree-Fock method

 Correlation corrections to SCF using configuration interaction (CI),
second order perturbation theory, and coupled cluster theories (CC)

 Density Functional Theory approximations

Reference:"Advances in electronic structure theory: GAMESS a decade later" M.S.Gordon, M.W.Schmidt pp.
1167-1189, in "Theory and Applications of Computational Chemistry: the first forty years" C.E.Dykstra,
G.Frenking, K.S.Kim, G.E.Scuseria (editors), Elsevier, Amsterdam, 2005.

 Molecules are made of atoms and atoms have electrons
 Electrons live in shells – s, p, d, f, g, h
 Shells are made of sub-shells – all have the same angular

momentum (L)
 Shells are represented using the mathematical functions
 Gaussian functions are taken as standard primitive functions (S.F. Boys)



 x, y, z – Cartesian center

 ax, ay, az – Angular momenta components; L = ax + ay + az

 is the exponent

 Shells with low angular momentum are typically contracted
▪

▪ K is the contraction coefficient. Dk’s are the contraction coefficients

2yx z
aa a(r)= x y z exp(r) 



() ()
K

a ka k

k

r D r 

Molecule Specification
•List of Atoms (Atomic Numbers Z)

•List of Nuclear Coordinates (R)
• Number of electrons

•List of Primitive Functions, exponents
• Number of contractions

Form the basis functions (M)

ERI
Two Electron Repulsion Integral

(ij|kl)
O(M3) to O(M4)

Hcore

(one-electron integrals)
Kinetic Energy Integrals (T)

Nuclear Attraction
Integrals (V)

cheap one-time
operation

•Required in every iteration
•Very Expensive operation
•Stored procedures not scalable
•Re-compute in every iteration
•Good target for GPU

Initial guess of the wave
function

Obtain the guess at the
Density Matrix (P)

O(M2)

Form the Fock Matrix
F = Hcore + G

G – Matrix
O(M2)

G = [(ij|kl) – ½(ik|jl)]*P

Convergence

Checks

Stop

Transformations
F’ = X’FX

C’  Diagonalize(F’)
C XC’

1

2

3

44

5

6

7

yes

No

Update the density
matrix from C

Repeat steps 3, 4, 5, 6, 7

8

 Four-center two-electron repulsion
integral



 Major computational step in both Ab
initio and DFT methods

 Complexity is O(M3)-O(M4), M is the
number of basis functions (Gaussian
functions are standard)

 Rys Quadrature – proposed by Dupius,
Rys, King (DRK)

 Numerical Gaussian quadrature based on a
set of orthogonal Rys polynomials

 Numerically stable, low memory foot print

 Amenable for GPUs and architectures with
smaller caches

12

1
() 1 1 2 2a b c dab|cd = () () () ()

r
    

ERI Inputs

shell a shell b shell c shell d

bra ket

CGTO CGTO CGTO CGTO

x y z

ax ay az

Contraction
Coefficients

Gaussian Exponents

Relevant to computations

Lower order functions are
typically contracted

 Two electron integral is expressed as
where , and

 X depends on exponents, centers and is independent of angular
momenta

 , where PL(t) is polynomial of degree L in t2. Evaluated
using N-point quadrature and hence where

 Using separation of variables, PL(t) which is integral over dr1dr2 , can be
written as a product of three (2-D) integrals over dx1dx2, dr1dr2, dz1dz2

 and
 Ix, Iy, Iz are computed using recurrence and transfer relations

0

() ()
L

m m
m

ij | kl = C F X



1
2 2

0

exp()m
mF (X)= t Xt dt

2()

() /

() /

A B

A i i j j

B k k l l

X r r

r r r A

r r r B



 

 

 

 

 

2()

() /

() /

A B

A i i j j

B k k l l

X r r

r r r A

r r r B



 

 

 

 

 

2()

() /

() /

BA

i i j jA

B k k l l

X r r

r r r A

r r r B



 

 

 

 

 

/ ()

i j

k l

AB A B

A

B



 

 

 

 

 

a cb dL= L +L +L +L

1
2

0

() exp() ()Lij | kl = Xt P t dt

1

() ()
N

Lij | kl = W P t 

 / 2 1N= L +

1/2() 2 / x y zij | kl = () I (t)I (t)I (t)W   


   = 0: 0: 0: ,0:)a cq(x,y,z) b dI (N, L , L , L L

Rys Quadrature Algorithm
for all l do

for all k do
for all j do

for all i do

end for
end for

end for
end for

(, , ,) (, , , ,) (, , , ,) (, , , ,)x x x x x y y y y y z z z z zI i j k l I i j k l I i j k l I i j k l


  

 Summation over the roots over all the intermediate 2-D integrals

 floating point operations =

 Recurrence, transfer and roots have predictable memory access
patterns, fewer flops. Quadrature step is the main focus here.

1 1 1 1
3* *

2 2 2 2
a cb dL L L L

N
    
        
    

   

 Example: (dd|dd) ERI block
 La = Lb = Lc = Ld = 2

 Number of roots, N = 5

 ERI size = 64 = 1296 elements

 Intermediate 2-D integrals Ix, Iy, Iz size:34*5 = 245

Possible Optimizations
 ERI computations are memory bound, hence optimize memory accesses

 Intermediate 2-D integrals are reused multiple times to construct
different ERI elements.

 Generate the different combinations automatically

SM – Streaming Multiprocessor

SP – Scalar Processor Core

SFU – Special Functional Unit

DP – Double Precision Unit

SP5

Registers

SP6

Registers

SP7

Registers

SP8

Registers

SFU

DP unit

Shared Memory

Constant Cache

Texture Cache

Multithreaded Instruction Unit

Device Memory

Symmetric Multiprocessor 1

Symmetric Multiprocessor 2

Symmetric Multiprocessor N

SP1

Registers

SP2

Registers

SP3

Registers

SP4

Registers

SFU

Block

(0,0)

Block

(1,0)

Block

(2,0)

Block

(0,1)

Block

(1,1)

Block

(2,1)

Thread

(0,0)

Thread

(1,0)

Thread

(2,0)

Thread

(3,0)

Thread

(4,0)

Thread

(0,1)

Thread

(1,1)

Thread

(2,1)

Thread

(3,1)

Thread

(4,1)

Thread

(0,2)

Thread

(1,2)

Thread

(2,2)

Thread

(3,2)

Thread

(4,2)

Thread Block

Grid of Blocks

 Since 2-D integrals are reused multiple times, load them into
shared memory
 However, shared memory access , synchronization limited to thread block

boundaries

 ERI block should be mapped onto a single thread block

 Is it possible to map all the ERI elements to individual threads in a block ?

 The answer depends on the ERI block under consideration

 For a (dd|dd) ERI block, ERI size = 64 = 1296 elements
 Maximum of 512 or 768 threads per block

 Map i, j, k indices corresponding to the three shells of the block to unique
threads and iterate over the l index

 Thread blocks are three dimensional, the mapping of i, j, k is natural

 For (ff|ff) ERI block, ERI size = 104 = 1000 elements
 Map i, j indices corresponding to the first two shells of the block to unique

threads and iterate over the l index

CUDA Rys quadrature: i, j, k mapping
map threads to ERI elements
I = threadIdx.x, j = threadIdx.y, k = threadIdx.z

arrays LX, LY, LZ map functions to exponents
(ix, iy, iz)  (LX[i], LY[i], LZ[i])
(jx, jy, jz)  (LX[j], LY[j], LZ[j])
(kx, ky, kz) (LX[k], LY[k], LZ[k])

for all l do
syncthreads
load the 2-D integrals to shmem
Ix, shmem Ix(:,:,:,LX[l])
Iy, shmemIy(:,:,:,LX[l])
Iz, shmem Iz(:,:,:,LX[l])
syncthreads

I(i, j, k, l) 
end for

, , ,x shmem y shmem z shmem

N

I I I

Further optimizations
 (dd|dd) case
 I{x,y,z},shmem = 5(33) = 135

elements per 2-D block
 Across iterations, some of the

elements in shared memory can
be reused

d-shell
dx

2, dy
2, dz

2, dxy, dxz, dyz  18 loads
dy

2, dz
2, dyz, dxy, dxz, dx

2
 13 loads

Ix 0* 0 0 1* 1 2*

Iy 2* 0* 1* 1 0* 0

Iz 0* 2* 1* 0* 1* 0*

CUDA Rys quadrature: i, j mapping
map threads to ERI elements
I = threadIdx.x, j = threadIdx.y

arrays LX, LY, LZ map functions to exponents
(ix, iy, iz)  (LX[i], LY[i], LZ[i])
(jx, jy, jz)  (LX[j], LY[j], LZ[j])
for all klz-block do

syncthreads
Iz, shmem Iz(:,:,LZ[k],LZ[l])
load 2-D integrals to shmem
for all klxy klz-block do
syncthreads
Ix, shmem Ix(:, :, LX[k], LX[l])
Iy, shmem Iy(:, :, LY[k], LX[l])
syncthreads
I(i, j, k, l) 
end for

end for

, , ,x shmem y shmem z shmem

N

I I I

Further optimizations
 (ff|ff) case
 I{x,y,z},shmem = 7(42) = 112

elements per 2-D block
 10 functions in the f-shell
 Reorder them (next slide)

3 0 0 2 2 1 1 1 0 0

3

0

0

2

2

1

1

1

0

0

0 3 0 1 0 2 0 1 2 1

0

3

0

1

0

2

0

1

2

1

0 0 3 0 1 0 2 1 1 2

0

0

3

0

1

0

2

1

1

2

3 2 1 0 0 1 2 1 0 0

3

2

1

0

0

1

2

1

0

0

0 1 2 3 2 1 0 0 1 0

0

1

2

3

2

1

0

0

1

0

0 0 0 0 1 1 1 2 2 3

0

0

0

0

1

1

1

2

2

3

X Y Z

fx
3, fy

3, fz
3, fx

2
y, fx

2
z, fxy

2, fxz
2, fxyz, fy

2
z, fyz

2

fx
3, fx

2
y , fxy

2 fy
3, fy

2
z , fxyz , fx

2
z, fxz

2, fyz
2 , fz

3

 Number of registers per thread, shared memory per thread
block limits the thread blocks that can be assigned per SM

 Loops implemented directly result in high register usage

 Explicitly unroll the loops. How ? Manually it’s tedious and
error-prone

 Use a common template and generate all the cases

 Python based Cheetah template engine is used- reuse
existing Python utilities and program support modules
easily.

ERI blocks flop count GFLOPSSP
3 GFLOPSDP

4

map5i jk map5i j map5i jk map5i j

(gg|gg) 2000 2733750000 n/a 45.23 n/a 22.55

(gg|f f) 4000 2160000000 n/a 34.42 n/a 15.32

(f f |gg) 4000 2160000000 n/a 30.91 n/a 14.11

(gg|dd) 10000 1701000000 n/a 43.08 n/a 21.05

(gg|pp) 40000 1458000000 n/a 36.53 n/a 17.08

(pp|gg) 40000 1458000000 34.23 6.93 18.20 5.38

(f f |f f) 10000 2100000000 n/a 40.43 n/a 20.11

(f f |dd) 20000 1296000000 n/a 37.54 n/a 18.29

(dd|f f) 20000 1296000000 37.69 23.32 16.53 15.04

(f f |pp) 80000 1080000000 27.43 31.46 15.23 17.05

(pp|f f) 80000 1080000000 32.23 6.21 17.45 4.84

(dd|dd) 60000 1166400000 31.10 20.17 16.38 13.67

 ERIs with odd number of roots have
maximum performance over the
even roots
 Odd roots - (gg|gg), (gg|dd),

and (ff|ff) cases
 Even roots – (ff|gg), (gg|ff),

and (dd|gg)

 The difference is as high as 25%

 Difference in the single and double
precision is roughly a factor of two

 Larger ijk mapping perform better
than the ij mappings

ERI blocks flop count GFLOPSSP
3 GFLOPSDP

4

GTX 275 Tesla GTX 275 Tesla

(gg|gg) 2000 2733750000 45.23 55.97 22.55 27.34

(gg|f f) 4000 2160000000 34.42 42.07 15.32 18.67

(f f |gg) 4000 2160000000 30.91 37.70 14.11 17.19

(gg|dd) 10000 1701000000 43.08 53.39 21.05 25.34

(dd |gg) 10000 1701000000 23.63 24.03 16.35 29.88

(gg|pp) 40000 1458000000 36.53 45.15 17.08 20.65

(pp|gg) 40000 1458000000 34.23 42.42 18.20 22.09

(f f |f f) 10000 2100000000 40.43 50.19 20.11 24.46

(f f |dd) 20000 1296000000 37.54 46.15 18.29 22.44

(dd |f f) 20000 1296000000 37.69 45.71 16.53 19.71

(f f |pp) 80000 1080000000 31.46 39.38 17.05 20.10

(pp|f f) 80000 1080000000 32.23 40.33 17.45 21.46

(dd |dd) 60000 1166400000 31.10 38.74 16.38 19.78

Inferences

 Performance depends on the ERI
class under evaluation and hence
also on the mapping (i,j,k vs. i,j)

 Difference between single and
double precision performance is
roughly a factor of two

 Difference between the GTX and
Tesla T is roughly 30% (consistent
with the clock speeds)

 In terms of register and shared
memory usage both are identical

 Rysq quadrature implementation performance results are comparable or
better than DGEMV BLAS routines.

 Some more improvements are possible by caching (texture, constant)
and also by more aggressive memory reuse possibly at the expense of re-
computation

 Very easy to generate the possible ERI shell combinations using a single
template

 Explicit unrolling can be controlled at different levels such as shells, roots
to test for performance improvements

 Being developed as a standalone library and application agnostic

 ERIs are 4-dimensional, hence it is very expensive to transfer them to the
host memory after computation.

 Fock matrix is 2-dimensional. So, consume the ERI’s as they are formed
to build the Fock matrix

 Handle the contracted ERI’s

 Mixed precision support

 A complete working SCF algorithm

1) Rys, J.; Dupuis, M.; King, H. J. Comput. Phys. 1976, 21, 144.
2) Boys, S.F. Proc. R. Soc 1950, 200, 542.
3) Rys, J.; Dupuis, M.; King, H. J. Comput. Chem. 1983, 4, 154–157.
4) Gordon, M. S.; Schmidt, M. W. Advances in electronic structure theory:

GAMESS a decade later. In Theory and Applications of Computational
Chemistry: the first forty years;
Dykstra, C. E.; Frenking, G.; Kim, K. S.; Scuseria, G. E., Eds.; Elsevier:
Amsterdam, 2005.

5) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2008, 4, 222–231.
6) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 1004–1015.
7) Yasuda, K. Journal of Computational Chemistry 2008, 29, 334-342.

US Department of Energy

Department of Defense - DURIP Grant

Ames Laboratory, Iowa State University

Air Force Office of Scientific Research

National Science Foundation - Petascale Applications grant

NVIDIA Corporation

Professor Todd Martinez and his group

asadchev@gmail.com
jfelder@iastate.edu
allada.v@gmail.com

mark@ si.msg.chem.iastate.edu
theresa@fi.ameslab.gov

brett@si.msg.chem.iastate.edu

