Accelerating Quantum Chemistry Research using GPUs - Two Electron Integrals in **GAMESS**

Andrey Asadchev Jacob Felder Veerendra Allada Dr. Mark S Gordon Dr. Theresa Windus Dr. Brett Bode

GPU Technology Conference , NVIDIA , San Jose, 2009

Outline

- **Computational Quantum Chemistry**
- General Atomic Molecular Electronic Structure Systems -GAMESS
- Electron Repulsion Integral (ERI) Problem
- Our Approach
	- **CUDA Implementation**
	- **•** Optimizations
	- **Automatically generated code**
- **Performance Results**
- **Future Goals**
- Questions & Discussion

Computational Quantum Chemistry

- Use computational methods to solve the electronic structure and properties of molecules.
- **Finds utility in the design of new drugs and materials**
- **Underlying theory is based on Quantum Mechanics -Schrodinger** wave equation
- **Properties calculated**
	- **Energies**
	- **Electronic charge distribution**
	- Dipole moments, vibrational frequencies.
- **Nethods employed**
	- Ab initio Methods (Solve from first principles)
	- **-** Density Functional Theory (DFT)
	- **Semi-empirical methods**
	- **Molecular Mechanics (MM)**

General Atomic Molecular Electronic Structure System (GAMESS)

- Ab initio molecular quantum chemistry software
- **USDOE "SciDAC Basic Energy Sciences" (BES) application**
- **Serial and parallel versions for several methods**
- **In brief, GAMESS can compute**
	- **Self Consistent Field (SCF) wave functions RHF, ROHF, UHF, GVB,** and MCSCF using the Hartree-Fock method
	- **Correlation corrections to SCF using configuration interaction (CI),** second order perturbation theory, and coupled cluster theories (CC)
	- Density Functional Theory approximations

Reference:"Advances in electronic structure theory: GAMESS a decade later" M.S.Gordon, M.W.Schmidt pp. 1167-1189, in "Theory and Applications of Computational Chemistry: the first forty years" C.E.Dykstra, G.Frenking, K.S.Kim, G.E.Scuseria (editors), Elsevier, Amsterdam, 2005.

Background

- **Molecules are made of atoms and atoms have electrons**
- Electrons live in shells $-$ s, p, d, f, g, h
- Shells are made of sub-shells all have the same angular momentum (L)
- **Shells are represented using the mathematical functions**
	- Gaussian functions are taken as standard primitive functions (S.F. Boys)
	- \mathcal{C} a_y _z a_z _{*a* γ **n** $(-\alpha r^2)$} $\varphi(r) = x^{a_x} y^{a_y} z^{a_z} exp(-\alpha r^2)$
	- x, y, z Cartesian center
	- a_x, a_{y} , a_{z} Angular momenta components; L = a_{x} + a_{y} + a_{z}
	- \bullet α is the exponent
	- Shells with low angular momentum are typically contracted
		- $\phi_a(r) = \sum_{k}^{K} D_{ka} \varphi_k(r)$ $\phi_a(r) = \sum_k^{\infty} D_{ka} \varphi_k(r)$
- $\varphi(r) = x^{\alpha_x} y^{\alpha_y} z^{\alpha_z} exp(-\alpha r^2)$

X, Y, Z Cartesian center
 a_{x} , a_{y} , a_z Angular momenta components; L = a_x + a_y + a_z
 α is the exponent

Shells with low angular momentum are typically contracted

Focus

Electronic Repulsion Integral (ERI) Problem

- **FICULT** Four-center two-electron repulsion integral
	- $(ab/cd) = \iint \varphi_a(1)\varphi_b(1) \frac{1}{a}$ $| \text{tegrad} |$
 $(ab/cd) = \int \int \varphi_a(1) \varphi_b(1) \frac{1}{r_{12}} \varphi_c(2) \varphi_d(2)$
- **Major computational step in both Ab** *initio* and DFT methods
- Complexity is O(M³)-O(M⁴), M is the number of basis functions (Gaussian functions are standard)
- **Rys Quadrature proposed by Dupius,** Rys, King (DRK)
	- Numerical Gaussian quadrature based on a set of orthogonal Rys polynomials
	- **Numerically stable, low memory foot print**
	- Amenable for GPUs and architectures with smaller caches

A i i j j **r** r **Calculation** Cor **CO B k k** \mathbf{R} the Rys Quadrature Method - Dupuis, Rys, King

- **Two electron integral is expressed as** where , $F_m(X) = \int_0^1 t^{2m} \exp(-Xt^2) dt$ and $L = L_a + L_b + L_c + L_d$ $(i j / k l) = \sum^{L} C_m F_m(X)$ mF_m *m* ij/kl) = $\sum^{L} C_m F_m(X)$ $\sum_{m=0}$ $\int_1^1 t^{2m} \exp(-\lambda^2 t^2)$ $F_m(X) = \int_0^1 t^{2m} \exp(-Xt^2) dt$ and $L = L_a + L_b + L_c + L_d$
- X depends on exponents, centers and is independent of angular momenta $X = \rho (r_A - r_B)^2$ $\rho = AB/(A+B)$

$$
r_A = (\alpha_i r_i + \alpha_j r_j) / A
$$

\n
$$
r_B = (\alpha_k r_k + \alpha_l r_l) / B
$$

\n
$$
A = \alpha_i + \alpha_j
$$

\n
$$
B = \alpha_k + \alpha_l
$$

- \bullet $(ij/kl) = \int_{0}^{l} \exp(-Xt^2) P_L(t) dt$, where P_L(t) is polynomial of degree L in t2. Evaluated using N-point quadrature and hence $(ij/kl) = \sum^{N} W_{\omega} P_L(t_{\omega})$ where 1 2 $\boldsymbol{0}$ $(i j / kl) = \int_{0}^{1} \exp(-Xt^{2}) P_{L}(t) dt$ 1 $(i j / kl) = \sum_{i=1}^{N} W_{i0} P_{L}(t_{i0})$ $\hat{U}(kl) = \sum_{\omega=1}^{N} W_{\omega} P_{L}(t_{\omega})$ where $N = L/2 + 1$
- Using separation of variables, P_L(t) which is integral over $dr_{1}dr_{2}$, can be written as a product of three (2-D) integrals over *dx1dx² , dr1dr² , dz1dz²*
- and $I_{q(-x,y,z)}(N,0:L_a,0:L_b,0:L_c,0:L_d)$
and $I_{q(-x,y,z)}(N,0:L_a,0:L_b,0:L_c,0:L_d)$
- I Ix, Iy, Iz are computed using recurrence and transfer relations

Rys Quadrature Algorithm

Rys Quadrature Algorithm for all *l* **do for all** *k* **do for all** *j* **do for all** *i* **do end for end for end for end for** $I(i, j, k, l) = \sum_{\omega} I_x(\omega, i_x, j_x, k_x, l_x) I_y(\omega, i_y, j_y, k_y, l_y) I_z(\omega, i_z, j_z, k_z, l_z)$

- **Summation over the roots over all the intermediate 2-D integrals**
- **floating point operations =**
- **Recurrence, transfer and roots have predictable memory access** floating point operations = $3*N*\binom{L_a+1}{2}\binom{L_b+1}{2}\binom{L_c+1}{2}\binom{L_d+1}{2}$
Recurrence, transfer and roots have predictable memory accorpatterns, fewer flops. Quadrature step is the main focus here.

Rys Quadrature Algorithm

- Example: (dd|dd) ERI block
	- $L_a = L_b = L_c = L_d = 2$
	- Number of roots, $N = 5$
	- ERI size = $64 = 1296$ elements
	- Intermediate 2-D integrals Ix , Iy , Iz size: $3^{4}*5 = 245$

Possible Optimizations

- ERI computations are memory bound, hence optimize memory accesses
- **Intermediate 2-D integrals are reused multiple times to construct** different ERI elements.
- **Generate the different combinations automatically**

CUDA – Compute Unified Device Architecture (Birds eye-view)

- **SM – Streaming Multiprocessor**
- **SP – Scalar Processor Core**
- **SFU – Special Functional Unit**
- **DP – Double Precision Unit**

CUDA Rys Quadrature Implementation considerations

- **Since 2-D integrals are reused multiple times, load them into** shared memory
	- **However, shared memory access, synchronization limited to thread block** boundaries
	- **ERI block should be mapped onto a single thread block**
	- If is it possible to map all the ERI elements to individual threads in a block?
	- The answer depends on the ERI block under consideration
- For a (dd|dd) ERI block, ERI size = $64 = 1296$ elements
	- Maximum of 512 or 768 threads per block
	- Map *i, j, k* indices corresponding to the three shells of the block to unique threads and iterate over the *l* index
	- Thread blocks are three dimensional, the mapping of *i, j, k* is natural
- For (ff|ff) ERI block, ERI size = 10^4 = 1000 elements
	- Map *i, j* indices corresponding to the first two shells of the block to unique threads and iterate over the *l* index

i, j, k mapping - algorithm, optimizations

CUDA Rys quadrature: i, j, k mapping # map threads to ERI elements $I =$ threadIdx.x, $i =$ threadIdx.y, $k =$ threadIdx.z

arrays LX, LY, LZ map functions to exponents $(ix, iy, iz) \leftarrow (LXTi, LY[ii, LZ[i])$ $(ix, iy, iz) \leftarrow (LX[i], LY[i], LZ[i])$ $(kx, ky, kz) \leftarrow (LX[k], LY[k], LZ[k])$

for all *l* **do**

syncthreads ## load the 2-D integrals to shmem $I_{x,shmem} \leftarrow \{ x(:,:,:. LX[1]) \}$ I_{y, shmem} ← Iy(:,:,:, LX[l]) $I_{z,shmem} \leftarrow Iz(:,:,I,X[1])$ syncthreads

$$
I(i, j, k, l) \leftarrow \sum_{N} I_{x,shmem} I_{y,shmem} I_{z,shmem}
$$

Further optimizations

- (dd|dd) case
- $I_{\{x,y,z\},\text{shmem}} = 5(3^3) = 135$ elements per 2-D block
- Across iterations, some of the elements in shared memory can be reused

d-shell

 d_{x}^{2} , d_{y}^{2} , d_{z}^{2} , d_{xy} , d_{xz} , d_{yz} \rightarrow 18 loads d_{y}^{2} , d_{z}^{2} , d_{yz} , d_{x} , d_{xz} , d_{x}^{2} \rightarrow 13 loads

i,j mapping – algorithm, optimizations

```
CUDA Rys quadrature: i, j mapping
# map threads to ERI elements
I = threadIdx.x, i = threadIdx.y
```

```
# arrays LX, LY, LZ map functions to exponents
(ix, iy, iz) \leftarrow (LXTi, LY[ii, LZ[i])(jx, jy, jz) \leftarrow (LX[j], LY[j], LZ[j])for all klz-block do
     syncthreads
     I<sub>z, shmem</sub> ← Iz(:,:,LZ[k],LZ[l])
     ## load 2-D integrals to shmem
     for all klxy klz-block do
     syncthreads
     I<sub>x, shmem</sub> ← Ix(:, :, LX[k], LX[l])
     I<sub>y, shmem</sub> ← Iy(:, :, LY[k], LX[l])
     syncthreads
I(i, j, k, l) \leftarrow \sum_{N} I_{x,shmem} I_{y,shmem} I_{z,shmem}<br>
end for<br>
end for
     end for
                          N
                        \sum I_{x,shmem} I_{y,shmem}
```
Further optimizations

- (ff|ff) case
- $I_{\{x,y,z\},\text{shmem}} = 7(4^2) = 112$ elements per 2-D block
- **10 functions in the f-shell**
- Reorder them (next slide)

 f_x^3, f_x^2 **y** , $f_{xy}^2 f_{y}^3$, f_{y}^2 , f_{xyz}^2 , f_{xyz}^2 , f_{x}^2 $_{z}$, **f**_{xz}², **f**_z³

	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf 1$	$\mathbf 2$	$\boldsymbol{2}$	$\mathbf{3}$
$\bf{0}$										
$\boldsymbol{0}$										
$\boldsymbol{0}$										
$\bf{0}$										
$\mathbf{1}$										
$\mathbf 1$										
$\mathbf 1$										
$\overline{2}$										
$\mathbf 2$										
$\overline{\mathbf{3}}$										

 $f_x^3, f_y^3, f_z^3, f_x^2$ \int **y**, f_x^2 $_{z}$ **, f**_{xy}², **f**_{xy}₂, **f**_{xyz}, **f**_y² $\int_{\mathbf{z}}^{2}$

Automatic Code Generation based on Templates Python-Cheetah

Warning: Template engine but not C++ templates

- **Number of registers per thread, shared memory per thread** block limits the thread blocks that can be assigned per SM
- **Loops implemented directly result in high register usage**
- Explicitly unroll the loops. How? Manually it's tedious and error-prone
- **Use a common template and generate all the cases**
- **Python based Cheetah template engine is used- reuse** existing Python utilities and program support modules easily.

Performance Results - Evaluated using the GeForce GTX 275

- \blacksquare ERIs with odd number of roots have maximum performance over the even roots
	- Odd roots (gg|gg), (gg|dd), and (ff|ff) cases
	- Even roots (ff $|gg\rangle$, (gg|ff), and (dd|gg)
- **The difference is as high as 25%**
- **•** Difference in the single and double precision is roughly a factor of two
- Larger *ijk* mapping perform better than the *ij* mappings

GTX 275 and Tesla Performance Comparison

Inferences

- **Performance depends on the ERI** class under evaluation and hence also on the mapping (*i,j,k* vs. *i,j*)
- **•** Difference between single and double precision performance is roughly a factor of two
- **Difference between the GTX and** Tesla T is roughly 30% (consistent with the clock speeds)
- In terms of register and shared memory usage both are identical

Conclusions

- **Rysq quadrature implementation performance results are comparable or** better than DGEMV BLAS routines.
- **Some more improvements are possible by caching (texture, constant)** and also by more aggressive memory reuse possibly at the expense of recomputation
- **•** Very easy to generate the possible ERI shell combinations using a single template
- **EXPLICIT 2018** Explicit unrolling can be controlled at different levels such as shells, roots to test for performance improvements
- **Being developed as a standalone library and application agnostic**

On going work

- **ERIS are 4-dimensional, hence it is very expensive to transfer them to the** host memory after computation.
- **Figure 1** Fock matrix is 2-dimensional. So, consume the ERI's as they are formed to build the Fock matrix
- **Handle the contracted ERI's**
- **Nixed precision support**
- **A** complete working SCF algorithm

References

- 1) Rys, J.; Dupuis, M.; King, H. *J. Comput. Phys.* **1976**, *21*, 144.
- 2) Boys, S.F. *Proc. R. Soc* **1950**, *200*, 542.
- 3) Rys, J.; Dupuis, M.; King, H. *J. Comput. Chem.* **1983**, *4*, 154–157.
- 4) Gordon, M. S.; Schmidt, M.W. Advances in electronic structure theory: GAMESS a decade later. In *Theory and Applications of Computational Chemistry: the first forty years*; Dykstra, C. E.; Frenking,G.; Kim, K. S.; Scuseria,G. E., Eds.; Elsevier:

Amsterdam, 2005.

- 5) Ufimtsev, I. S.; Martinez, T. J. *J. Chem. Theory Comput.* **2008**, *4*, 222–231.
- 6) Ufimtsev, I. S.; Martinez, T. J. *J. Chem. Theory Comput.* **2009**, *5*, 1004–1015.
- 7) Yasuda, K. *Journal of Computational Chemistry* **2008,** *29,* 334-342.

Acknowledgements & Contacts

US Department of Energy Department of Defense - DURIP Grant Ames Laboratory, Iowa State University Air Force Office of Scientific Research National Science Foundation - Petascale Applications grant NVIDIA Corporation Professor Todd Martinez and his group

> asadchev@gmail.com jfelder@iastate.edu allada.v@gmail.com mark@ si.msg.chem.iastate.edu theresa@fi.ameslab.gov brett@si.msg.chem.iastate.edu

Questions and Discussion

