Accelerating Quantum Chemistry Research using GPUs – Two Electron Integrals in GAMESS

Andrey Asadchev Jacob Felder Veerendra Allada Dr. Mark S Gordon Dr. Theresa Windus Dr. Brett Bode

GPU Technology Conference, NVIDIA, San Jose, 2009

Outline

- Computational Quantum Chemistry
- General Atomic Molecular Electronic Structure Systems -GAMESS
- Electron Repulsion Integral (ERI) Problem
- Our Approach
 - CUDA Implementation
 - Optimizations
 - Automatically generated code
- Performance Results
- Future Goals
- Questions & Discussion

Computational Quantum Chemistry

- Use computational methods to solve the electronic structure and properties of molecules.
- Finds utility in the design of new drugs and materials
- Underlying theory is based on Quantum Mechanics –Schrodinger wave equation
- Properties calculated
 - Energies
 - Electronic charge distribution
 - Dipole moments, vibrational frequencies.
- Methods employed
 - Ab initio Methods (Solve from first principles)
 - Density Functional Theory (DFT)
 - Semi-empirical methods
 - Molecular Mechanics (MM)

General Atomic Molecular Electronic Structure System (GAMESS)

- Ab initio molecular quantum chemistry software
- USDOE "SciDAC Basic Energy Sciences" (BES) application
- Serial and parallel versions for several methods
- In brief, GAMESS can compute
 - Self Consistent Field (SCF) wave functions RHF, ROHF, UHF, GVB, and MCSCF using the Hartree-Fock method
 - Correlation corrections to SCF using configuration interaction (CI), second order perturbation theory, and coupled cluster theories (CC)
 - Density Functional Theory approximations

Reference: "Advances in electronic structure theory: GAMESS a decade later" M.S.Gordon, M.W.Schmidt pp. 1167-1189, in "Theory and Applications of Computational Chemistry: the first forty years" C.E.Dykstra, G.Frenking, K.S.Kim, G.E.Scuseria (editors), Elsevier, Amsterdam, 2005.

Background

- Molecules are made of atoms and atoms have electrons
- Electrons live in shells s, p, d, f, g, h
- Shells are made of sub-shells all have the same angular momentum (L)
- Shells are represented using the mathematical functions
 - Gaussian functions are taken as standard primitive functions (S.F. Boys)

 - x, y, z Cartesian center
 - a_x, a_y, a_z Angular momenta components; L = $a_x + a_y + a_z$
 - α is the exponent
 - Shells with low angular momentum are typically contracted
 - $\phi_a(r) = \sum_{k}^{\kappa} D_{ka} \varphi_k(r)$
 - K is the contraction coefficient. D_k's are the contraction coefficients

Focus

Electronic Repulsion Integral (ERI) Problem

- Four-center two-electron repulsion integral
 - $(ab/cd) = \int \int \varphi_a(1)\varphi_b(1)\frac{1}{r_o}\varphi_c(2)\varphi_d(2)$
- Major computational step in both Ab initio and DFT methods
- Complexity is O(M³)-O(M⁴), M is the number of basis functions (Gaussian functions are standard)
- Rys Quadrature proposed by Dupius, Rys, King (DRK)
 - Numerical Gaussian quadrature based on a set of orthogonal Rys polynomials
 - Numerically stable, low memory foot print
 - Amenable for GPUs and architectures with smaller caches

Computation of Electron Repulsion Integrals Using the Rys Quadrature Method - Dupuis, Rys, King

- Two electron integral is expressed as $(ij/kl) = \sum_{m=0}^{L} C_m F_m(X)$ where $\int_{0}^{1} t^{2m} \exp(-Xt^2) dt$ and $L = L_a + L_b + L_c + L_d$
- X depends on exponents, centers and is independent of angular momenta $X = \rho(r_{\rm e} - r_{\rm p})^2$ $\rho = AB/(A+B)$

$$r_{A} = (\alpha_{i}r_{i} + \alpha_{j}r_{j}) / A \qquad A = \alpha_{i} + \alpha_{j}$$

$$r_{B} = (\alpha_{k}r_{k} + \alpha_{l}r_{l}) / B \qquad B = \alpha_{k} + \alpha_{l}$$

- $(ij/kl) = \int_{0}^{1} \exp(-Xt^2)P_L(t)dt$, where $P_L(t)$ is polynomial of degree L in t2. Evaluated using N-point quadrature and hence $(ij/kl) = \sum_{\omega=1}^{N} W_{\omega}P_L(t_{\omega})$ where N = L/2+1
- Using separation of variables, P_1 (t) which is integral over $dr_1 dr_2$, can be written as a product of three (2-D) integrals over $dx_1 dx_2$, $dr_1 dr_2$, $dz_1 dz_2$
- $(ij/kl) = 2(\rho/\pi)^{1/2} \sum_{\omega} I_x(t_{\omega}) I_y(t_{\omega}) I_z(t_{\omega}) W_{\omega}$ and $I_{q(=x,y,z)}(N,0:L_a,0:L_b,0:L_c,0:L_d)$ Ix, Iy, Iz are computed using recurrence and transfer relations

Rys Quadrature Algorithm

 $\begin{array}{l} \label{eq:product} \begin{array}{l} \displaystyle \underset{f \text{ or all } l \text{ do} \\ \text{ for all } l \text{ do} \\ \text{ for all } j \text{ do} \\ \text{ for all } j \text{ do} \\ \text{ for all } i \text{ do} \\ I(i,j,k,l) = \sum_{\omega} I_x(\omega,i_x,j_x,k_x,l_x)I_y(\omega,i_y,j_y,k_y,l_y)I_z(\omega,i_z,j_z,k_z,l_z) \\ \text{ end for } \end{array}$

- Summation over the roots over all the intermediate 2-D integrals
- floating point operations = $3*N*\binom{L_a+1}{2}\binom{L_b+1}{2}\binom{L_c+1}{2}\binom{L_d+1}{2}$
- Recurrence, transfer and roots have predictable memory access patterns, fewer flops. Quadrature step is the main focus here.

Rys Quadrature Algorithm

- Example: (dd|dd) ERI block
 - $L_a = L_b = L_c = L_d = 2$
 - Number of roots, N = 5
 - ERI size = 6⁴ = 1296 elements
 - Intermediate 2-D integrals Ix, Iy, Iz size: $3^{4*5} = 245$

Possible Optimizations

- ERI computations are memory bound, hence optimize memory accesses
- Intermediate 2-D integrals are reused multiple times to construct different ERI elements.
- Generate the different combinations automatically

CUDA – Compute Unified Device Architecture (Birds eye-view)

- **SM Streaming Multiprocessor**
- SP Scalar Processor Core
- SFU Special Functional Unit
- DP Double Precision Unit

CUDA Rys Quadrature Implementation considerations

- Since 2-D integrals are reused multiple times, load them into shared memory
 - However, shared memory access, synchronization limited to thread block boundaries
 - ERI block should be mapped onto a single thread block
 - Is it possible to map all the ERI elements to individual threads in a block ?
 - The answer depends on the ERI block under consideration
- For a (dd|dd) ERI block, ERI size = 6⁴ = 1296 elements
 - Maximum of 512 or 768 threads per block
 - Map *i*, *j*, *k* indices corresponding to the three shells of the block to unique threads and iterate over the *l* index
 - Thread blocks are three dimensional, the mapping of *i*, *j*, *k* is natural
- For (ff|ff) ERI block, ERI size = $10^4 = 1000$ elements
 - Map *i*, *j* indices corresponding to the first two shells of the block to unique threads and iterate over the *l* index

i, j, k mapping – algorithm, optimizations

CUDA Rys quadrature: i, j, k mapping # map threads to ERI elements I = threadIdx.x, j = threadIdx.y, k = threadIdx.z

arrays LX, LY, LZ map functions to exponents (ix, iy, iz) \leftarrow (LX[i], LY[i], LZ[i]) (jx, jy, jz) \leftarrow (LX[j], LY[j], LZ[j]) (kx, ky, kz) \leftarrow (LX[k], LY[k], LZ[k])

for all *l* do

syncthreads ## load the 2-D integrals to shmem $I_{x, shmem} \leftarrow Ix(:,:,:,LX[I])$ $I_{y, shmem} \leftarrow Iy(:,:,:,LX[I])$ $I_{z, shmem} \leftarrow Iz(:,:,:,LX[I])$ syncthreads

$$I(i, j, k, l) \leftarrow \sum_{N} I_{x, shmem} I_{y, shmem} I_{z, shmem}$$

end for

Further optimizations

- (dd|dd) case
- $I_{x,y,z},shmem} = 5(3^3) = 135$ elements per 2-D block
- Across iterations, some of the elements in shared memory can be reused

<u>d-shell</u>

 $\begin{array}{c} \mathsf{d_{x^2}, d_{y^2}, d_{z^2}, d_{xy'}, d_{xz'}, d_{yz} \rightarrow 18 \text{ loads} \\ \mathsf{d_{y^2}, d_{z^2}, d_{yz'}, d_{yy'}, d_{xy'}, \mathsf{d_{xz'}, d_{x^2}} \rightarrow 13 \text{ loads} \end{array}$

I _x	0*	0	0	1*	1	2*
l _y	2*	0*	1*	1	0*	0
I _z	0*	2*	1*	0*	1*	0*

i,j mapping – algorithm, optimizations

```
CUDA Rys quadrature: i, j mapping
# map threads to ERI elements
I = threadIdx.x, j = threadIdx.y
```

```
# arrays LX, LY, LZ map functions to exponents
(ix, iy, iz) \leftarrow (LX[i], LY[i], LZ[i])
(jx, jy, jz) \leftarrow (LX[j], LY[j], LZ[j])
for all kl_{z-block} do
     syncthreads
     I_{z, shmem} \leftarrow Iz(:,:,LZ[k],LZ[l])
     ## load 2-D integrals to shmem
     for all kl_{xy} kl_{z-block} do
     syncthreads
     I_{x, shmem} \leftarrow Ix(:, :, LX[k], LX[l])
     I_{y, shmem} \leftarrow Iy(:, :, LY[k], LX[l])
     syncthreads
     I(i, j, k, l) \leftarrow \sum_{x, shmem} I_{x, shmem} I_{z, shmem}
     end for
end for
```

Further optimizations

- (ff|ff) case
- $I_{x,y,z}, \text{shmem} = 7(4^2) = 112$ elements per 2-D block
- 10 functions in the f-shell
- Reorder them (next slide)

 $f_x^3, f_x^2, f_{xy}^2, f_{yy}^3, f_{yz}^2, f_{xyz}^2, f_{xz}^2, f_{xz}^2, f_{yz}^2, f_z^3$

	3	2	1	0	0	1	2	1	0	0
3										
2										
1										
0					-					
0										
1										
2										
1										
0										
0										

	0	1	2	3	2	1	0	0	1	0
0										
1										
2										
3										
2										
1										
0										
0										
1										
0										

	0	0	0	0	1	1	1	2	2	3
0										
0										
0										
0										
1										
1										
1										
2										
2										
3										

 $f_x^3, f_y^3, f_z^3, f_x^2, f_x^2, f_x^2, f_{xy}^2, f_{xz}^2, f_{xyz}^2, f_{yz}^2, f_{yz}^2$

X												
	3	0	0	2	2	1	1	1	0	0		
3												
0												
0												
2												
2												
1												
1												
1												
0												
0												

Υ

		_								
	0	0	3	0	1	0	2	1	1	2
0		-								
0										
3										
0										
1										
0										
2										
1										
1		_								
2										

Ζ

Automatic Code Generation based on Templates Python – Cheetah

Warning: Template engine but not C++ templates

- Number of registers per thread, shared memory per thread block limits the thread blocks that can be assigned per SM
- Loops implemented directly result in high register usage
- Explicitly unroll the loops. How? Manually it's tedious and error-prone
- Use a common template and generate all the cases
- Python based Cheetah template engine is used- reuse existing Python utilities and program support modules easily.

Performance Results – Evaluated using the GeForce GTX 275

ERI	blocks	flop count	GFLOPS _{SP} ³		GFLC	OPS _{DP} ⁴
	-		map⁵i jk	map⁵i j	map⁵i jk	map⁵i j
(gg gg)	2000	2733750000	n/a	45.23	n/a	22.55
(gg f f)	4000	216000000	n/a	34.42	n/a	15.32
(f f gg)	4000	216000000	n/a	30.91	n/a	14.11
(gg dd)	10000	170100000	n/a	43.08	n/a	21.05
(gg pp)	40000	1458000000	n/a	36.53	n/a	17.08
(pp gg)	40000	1458000000	34.23	6.93	18.20	5.38
(f f f f)	10000	210000000	n/a	40.43	n/a	20.11
(f f dd)	20000	1296000000	n/a	37.54	n/a	18.29
(dd f f)	20000	1296000000	37.69	23.32	16.53	15.04
(f f pp)	80000	108000000	27.43	31.46	15.23	17.05
(pp f f)	80000	1080000000	32.23	6.21	17.45	4.84
(dd dd)	60000	1166400000	31.10	20.17	16.38	13.67

ERIs with odd number of roots have maximum performance over the even roots

- Odd roots (gg|gg), (gg|dd), and (ff|ff) cases
- Even roots (ff|gg), (gg|ff), and (dd|gg)
- The difference is as high as 25%
- Difference in the single and double precision is roughly a factor of two
- Larger *ijk* mapping perform better than the *ij* mappings

GTX 275 and Tesla Performance Comparison

ERI	ERI blocks flop count		GFLOPS	SP ³	GFLOPS _{DP} ⁴		
			GTX 275	Tesla	GTX 275	Tesla	
(gg gg)	2000	2733750000	45.23	55.97	22.55	27.34	
(gg ff)	4000	2160000000	34.42	42.07	15.32	18.67	
(ff gg)	4000	2160000000	30.91	37.70	14.11	17.19	
(gg dd)	10000	1701000000	43.08	53.39	21.05	25.34	
(dd gg)	10000	1701000000	23.63	24.03	16.35	29.88	
(gg pp)	40000	1458000000	36.53	45.15	17.08	20.65	
(pp gg)	40000	1458000000	34.23	42.42	18.20	22.09	
(ff ff)	10000	210000000	40.43	50.19	20.11	24.46	
(ff dd)	20000	1296000000	37.54	46.15	18.29	22.44	
(dd ff)	20000	1296000000	37.69	45.71	16.53	19.71	
(ff pp)	80000	108000000	31.46	39.38	17.05	20.10	
(pp ff)	80000	108000000	32.23	40.33	17.45	21.46	
(dd dd)	60000	1166400000	31.10	38.74	16.38	19.78	

<u>Inferences</u>

- Performance depends on the ERI class under evaluation and hence also on the mapping (*i,j,k* vs. *i,j*)
- Difference between single and double precision performance is roughly a factor of two
- Difference between the GTX and Tesla T is roughly 30% (consistent with the clock speeds)
- In terms of register and shared memory usage both are identical

Conclusions

- Rysq quadrature implementation performance results are comparable or better than DGEMV BLAS routines.
- Some more improvements are possible by caching (texture, constant) and also by more aggressive memory reuse possibly at the expense of recomputation
- Very easy to generate the possible ERI shell combinations using a single template
- Explicit unrolling can be controlled at different levels such as shells, roots to test for performance improvements
- Being developed as a standalone library and application agnostic

On going work

- ERIs are 4-dimensional, hence it is very expensive to transfer them to the host memory after computation.
- Fock matrix is 2-dimensional. So, consume the ERI's as they are formed to build the Fock matrix
- Handle the contracted ERI's
- Mixed precision support
- A complete working SCF algorithm

References

- 1) Rys, J.; Dupuis, M.; King, H. J. Comput. Phys. **1976**, 21, 144.
- 2) Boys, S.F. *Proc. R. Soc* **1950**, *200*, 542.
- 3) Rys, J.; Dupuis, M.; King, H. *J. Comput. Chem.* **1983**, *4*, 154–157.
- Gordon, M. S.; Schmidt, M. W. Advances in electronic structure theory: GAMESS a decade later. In *Theory and Applications of Computational Chemistry: the first forty years*; Dykstra, C. E.; Frenking, G.; Kim, K. S.; Scuseria, G. E., Eds.; Elsevier:

Amsterdam, 2005.

- 5) Ufimtsev, I. S.; Martinez, T. J. *J. Chem. Theory Comput.* **2008**, *4*, 222–231.
- 6) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5, 1004–1015.
- 7) Yasuda, K. Journal of Computational Chemistry **2008**, 29, 334-342.

Acknowledgements & Contacts

US Department of Energy Department of Defense - DURIP Grant Ames Laboratory, Iowa State University Air Force Office of Scientific Research National Science Foundation - Petascale Applications grant NVIDIA Corporation Professor Todd Martinez and his group

> asadchev@gmail.com jfelder@iastate.edu allada.v@gmail.com mark@ si.msg.chem.iastate.edu theresa@fi.ameslab.gov brett@si.msg.chem.iastate.edu

Questions and Discussion

