
© 2008 NVIDIA Corporation.

Michael Gold, Mark Kilgard and Barthold Lichtenbelt

OpenGL and the Future

© 2008 NVIDIA Corporation.

• OpenGL 3.0 / GLSL 1.30 (Barthold Lichtenbelt)
• blichtenbelt@nvidia.com

• OpenGL 3.0 and Cg 2.1 (Mark Kilgard)
• mjk@nvidia.com

• CUDA <-> OpenGL interop (Michael Gold)
• gold@nvidia.com

Agenda

© 2008 NVIDIA Corporation.

• Announced two weeks ago
• Support for latest generations of Programmable

Hardware
• Installed base > 60 Million units

• New deprecation model with profiles
• Streamline the API

• Full interoperability with OpenCL and CUDA
• Access to compute

• Collaboration among hardware vendors and
software vendors
• Solving real needs

• Cross platform
• Windows XP and Vista, Linux, Mac OS, …

OpenGL 3.0

© 2008 NVIDIA Corporation.

• Forward-looking context
• Greater VBO performance
• FBO and related extensions
• Conditional rendering
• Transform feedback
• FP internal formats for textures, renderbuffers
• Half-float (16-bit) vertex and pixel data formats
• Array textures
• One and two-channel (R and RG) internal formats

for textures and renderbuffers
• RGTC internal compressed texture formats,

packed float and texture shared exponent
• sRGB framebuffer support

OpenGL 3.0 new features

© 2008 NVIDIA Corporation.

• Native integer support
• bitwise operators, texture return values, uniforms, shader IO

• Expanded texturing support
• Size queries, offsets, explicit LOD and derivative control,

texture arrays, integer support

• Switch statements
• Several new built-in functions

• Hyperbolic trig functions
• trunc(), round(), roundEven(), isnan(), isinf(), modf()
• Integer related: sign(), min/max(), abs(), ….

• Pre-processor token pasting (##)
• User-defined fragment outputs
• Non-perspective interpolation of varyings
• gl_VertexID vertex shader input

GLSL 1.30

© 2008 NVIDIA Corporation.

Extensions for OpenGL 3.0

Feature Extension for OpenGL 3.0

Platform extension support for
managing OpenGL 3.0 contexts

{WGL|GLX}_ARB_create_context

Geometry shaders to modify vertices
and/or generate new vertices and
primitives

ARB_geometry_shader4

Large 1D table lookups for GLSL ARB_texture_buffer_object

Instanced primitive rendering for
OpenGL 3.0 capable hardware

ARB_draw_instanced

© 2008 NVIDIA Corporation.

Extensions for OpenGL 2.x

Feature from OpenGL 3.0 Extension for OpenGL 2.x

All framebuffer object functionality ARB_framebuffer_object

16-bit floating point vertex formats ARB_half_float_vertex

sRGB color space rendering ARB_framebuffer_sRGB

More efficient buffer mapping ARB_map_buffer_range

1 and 2 component texture
compression

ARB_texture_compression_rgtc

Efficient vertex array state
management

ARB_vertex_array_object

1 and 2 component render-to-
texture

ARB_texture_rg

Vertex array instancing for OpenGL
2.x capable hardware

ARB_instanced_arrays

© 2008 NVIDIA Corporation.

• OpenGL has never removed features
• Commitment to backwards compatibility is one of

OpenGL’s strengths
• After 15+ years, defining new features to work with old

features becomes increasingly difficult

• OpenGL 3.0 does not remove any features
• OpenGL 3.0 does mark certain features as

deprecated
• Redundant, Legacy and obsolete features
• Parts of OpenGL unlikely to be accelerated

• Future OpenGL revisions will remove these
deprecated features
• Guidance to developers to prepare for future revisions
• Plan to remove these features sooner, rather than later.

Deprecated features

© 2008 NVIDIA Corporation.

• Fixed-function vertex and fragment processing
• Color-index mode
• Display lists, and Selection and Feedback modes
• GLSL 1.10 and 1.20
• Begin/End based rendering
• Application-generated object names
• Quads and polygon primitives
• Polygon and Line Stipple
• Pixel transfer modes
• Bitmaps, DrawPixels, PixelZoom
• and quite a few others...

• See Appendix E of OpenGL 3.0 specification for the list

Deprecated features

© 2008 NVIDIA Corporation.

• Step 1 Core feature
• In core, fully supported. Will be in the next API version

• Step 2 Core (Deprecated feature)
• In core, marked as deprecated
• May be fully or partly removed in a later version
• New features need not define interactions with

deprecated ones

• Step 3 ARB approved Extension
• Removed from core -> an ARB extension (no suffix)
• Extension spec identifies the removed functionality
• Vendors may support the extension if markets require it

• Step 4 Removed from ARB extension list
• Could be an EXT or vendor extension, if vendor markets

still require it (still no suffixes required)

Deprecation mechanism

© 2008 NVIDIA Corporation.

• Features will be deprecated for at least one spec
release (step 2) before being removed

• Extension Path: Vendor/EXT->ARB->Core
• With possible API / functionality changes as we learn from

experience

• Deprecation Path: Core->ARB->EXT/Vendor
• No API or functionality changes

Deprecation mechanism

© 2008 NVIDIA Corporation.

Feature Evolution Model - Deprecation

New Functionality
Before Adoption into

Core
Old Functionality

Removed from Core

Incoming Extensions
that may be integrated

into Core in future

Outgoing Extensions
that may be dropped
completely in future

Core Specification

time

© 2008 NVIDIA Corporation.

• Encapsulates a set of functionality
• Optional to implement for vendors
• Sum of all profiles makes up the Core spec

• OpenGL 3.0 is one big profile

• Deprecation mechanism is applied per profile
• Only the OpenGL ARB can define profiles
• Currently discussing need for “workstation”

profile
• Could contain most of the deprecated functionality
• Need input from you!

Profiles

© 2008 NVIDIA Corporation.

Evolution Model - Profiles

New Functionality
Before Adoption into

Core
Old Functionality

Removed from Core
Core Specification

Core Specification
The sum of all Profile functionality

© 2008 NVIDIA Corporation.

Evolution Model - Profiles

New Functionality
Before Adoption into

Core
Old Functionality

Removed from Core
Core Specification

Core Specification
The sum of all Profile functionality

Profile AProfile - functionality needed to
meet the needs of a particular
market. Conformant products
may implement one or more

Profiles. A Profile is by
definition a subset of the Core.

© 2008 NVIDIA Corporation.

Evolution Model - Profiles

New Functionality
Before Adoption into

Core
Old Functionality

Removed from Core
Core Specification

Core Specification
The sum of all Profile functionality

Profile AProfile - functionality needed to
meet the needs of a particular
market. Conformant products
may implement one or more

Profiles. A Profile is by
definition a subset of the Core.

Profile B

© 2008 NVIDIA Corporation.

• Full context
• Contains all features in a version of the core specification

• Forward compatible context
• Contains only the non-deprecated functionality in a

context and profile

Context types

© 2008 NVIDIA Corporation.

Evolution Model – Forward Compatibility

New Functionality
Before Adoption into

Core
Old Functionality

Removed from Core

Core Specification
The sum of all Profile functionality

Profile A

Profile B

© 2008 NVIDIA Corporation.

Evolution Model – Forward Compatibility

New Functionality
Before Adoption into

Core
Old Functionality

Removed from Core

Core Specification
The sum of all Profile functionality

Profile A

Profile B

Profile A
Forward Compatibility

Context

Developers may request a
“Forward Compatibility Context”

for a Profile - with non-
deprecated functionality that is

guaranteed to be present in next
release

© 2008 NVIDIA Corporation.

Evolution Model – Forward Compatibility

New Functionality
Before Adoption into

Core
Old Functionality

Removed from Core

Core Specification
The sum of all Profile functionality

Profile A

Profile B

Functionality not in the Forward
Compatibility Context is

DEPRECATED and may be removed
from future releases (and may have
reduced interoperability with new

functionality)

Profile B
Forward Compatibility

Context

Profile A
Forward Compatibility

Context

Developers may request a
“Forward Compatibility Context”

for a Profile - with non-
deprecated functionality that is

guaranteed to be present in next
release

© 2008 NVIDIA Corporation.

• In the past creating a context gave you whatever
version the driver decided
• No issue since the API was always backwards compatible,

• Starting with OpenGL 3.1, backwards
compatibility may no longer exist
• due to deprecation
• Apps need a way to specify which functionality they

require when creating a context

• Existing context creation calls cannot return 3.0
or later contexts

• WGL/GLX_ARB_create_context
• To request specific context version, profile, forward

compatible context or debug context.
• wgl/glxCreateContextAttribsARB()

Context creation

© 2008 NVIDIA Corporation.

• Beta drivers available for download now
• For Windows XP and Vista
• Linux to follow shortly
• G80 and higher GPUs supported. Geforce and Quadro

• Beta drivers, aimed at developers to get started
• Supports full OpenGL 3.0 context
• Supports GLSL 1.30
• Also supporting most of the extensions
• See driver release notes for details

developer.nvidia.com/object/opengl_3_driver.html

OpenGL 3.0 beta drivers

© 2008 NVIDIA Corporation.

• developer.nvidia.com/object/nvemulate.html

NVemulate

© 2008 NVIDIA Corporation.

• Schedule driven
• ARB extensions are candidates for folding into a

future core
• ARB_draw_instanced
• ARB_geometry_shader
• ARB_texture_buffer_object

• Backing uniform variables with buffer objects
• #include mechanism for GLSL
• Attribute index offsets
• Remove deprecated features
• Profiles
• Object model improvements
• Other functionality you need?

Future OpenGL plans

© 2008 NVIDIA Corporation.

Questions

