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< . Physically-Based Simulation

e Games are using it

— Newtonian physics on the CPU

e Rigid body dynamics, projectile and particle
motion, inverse kinematics

— PDEs and non-linear fun on the CPU/VPU
 Water simulation (geometry), special effects

e It's cool, but computationally expensive

— Complex non-rigid body dynamics & effects
e Water, fire, smoke, fluid flow, glow and HDR

— High data bandwidth
— Lots of math. Much can be done in parallel
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< . Physically-Based Simulation

e Graphics processors are perfect for
many simulation algorithms
— GeForce 3, 4, GeForce FX, Radeon 9xxx
— Direct3D8, Direct3D9 support

e Free parallelism, GFlops of math,
vector processors
— 500 Mhz * 8 pix/clk * 4-floats/pixel = 16 GFlops
e Current generation has 16 and 32-bit
float precision throughout
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© Games Doing Simulation and Effects
nvioia. on the GPU

(partial list)

e PC
— Elder Scrolls 111: Morrowind
— Dark Age of Camelot
— Tron 2.0
— Tiger Woods 2.0
— 3DMark2003

e XBoOX
— Halo 2
— Wreckless

e PS2
— Baldur’s Gate: Dark Alliance
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< Vjsual Simulation

e Goal isvisual interest
— Not numerical accuracy
— Often not physical accuracy, just the right feel

e Approximations and home-brew methods produce great results
— Dynamic scenes, interesting reaction to inputs

— If the user is convinced, the method, math, and stability don’t
matter!!

e 8-bit math and results are ok (last year’s hardware)

Elder Scrolls lll: Morrowind
Bethesda Softworks

GameDeV
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< .. Practical Techniques

e Interesting phenomena
— Useful In real-time scenes

e Interactive: Can react to characters,
events, and the environment

e Effects themselves run at 150-500 fps
— Doesn’t kill your framerate

e Free modular source code

e Developer support
— Just ask!
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< How Does It Work?

e Graphics processor renders colors
— 8 bits per channel or 32 bits per channel

e Colors store the state of the simulation
— Blue = 1D position, Green = velocity, Red = force

— RGB, = 3D position, RGB, = 3D velocity

e Rendered colors are read back in and used

to render new colors (the next time step)
— Render To Texture (“RTT”)
— Redirect color to a vertex stream (coming soon to OGL)

e lterate, storing temporaries and results in video
memory textures
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< The Result

e Graphics hardware textures are used to create
or animate other textures

e Animated textures can be used in the scene
— Data & temporaries might never been seen

e Fast, endless, non-repeating or repeating

e A little video memory can go a long way!
— Much less storage than ‘canned’ animation
— 2 textures can make an endless animation

- -
DISPLAY
RTT
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< What Can We Do?

e Blur and glow
e Animated blur, dissolves, distortions

e Animated bump maps
— Normal maps, EMBM du/dv maps

e Cellular Automata (CA)
— Noise, animated patterns
— Allows for very complex rules

e Physical Simulation

— On N-dimensional grids
e CA, CML, LBM
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< .. How to do it
e Objective - Keep it ALL on the GPU!

— Efficient calculation

— No CPU or GPU pipeline stalls for synchronization
— No AGP texture transfer between CPU and GPU

— Saves a ton of CPU MHz

e Geometry drives the processing

e Programmable Pixel Shaders do the math
— Each Texture Coordinate reads data from specific location
e Location is absolute or relative to pixel being rendered

— N texture fetches gives N RGBA data inputs
e Sample neighboring texels, or any texels
e Compute slopes, derivatives, gradients, divergence
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.. Geometry Drives Processing

e Textures store input,
temporary, and final :
results Texture

e Geometry’s texture Texture
coordinates get Texture
interpolated == = .

eometry

e Fetch texture data at
Interpolated coords 1| ReNDER

e Do calculations on the tre Sur
texture data in the Render Targel
programmable pixel
shader
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a Example 1: Sample and
wvioin.  Combine Each Texel’s Neighbors

e Source texture ‘src’ is (X,y) texels in size
— SetTexture(0, src);
— SetTexture(1, src);
— SetTexture(2, src);
— SetTexture(3, src);

e texel width ‘tw’ = 1/x
e texel height ‘th’ = 1/y

e Render target is also a texture (X,y)
pixels in size

— SetRenderTarget(dest_tex);
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o Example 1 Contd.

tc0 = (0,0)

e Render a quad exactly covering the
render target

— Texture coords from (0,0) to (1,1)

— Unmodified, these would copy the
source exactly into the dest

e Vertex Shader reads input T 2
coordinate ‘tcO’ Quad  tco=(11)
e Writes 4 output coordinates NLS

: : A
— Each coordinate offset by a different VA VB
vector: VA, VB, VC, VD < >

VA = (-tw, 0, 0, 0)
VD = (0, th, 0, 0) VD ¥ Y
out TO = tcO + VA
out_T1 = tcO + VB
out T2 = tcO + VC

out T3 =tcO + VD l
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o Example 1 Contd.

e The offset coordinates translate the source
textures, so that a pattern of neighbors is
sampled for each pixel rendered

/VC

Src sre

= A
SrC ) [
- Cﬂ
<
src

VB
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o Sampling From Neighbors

e When destination pixel, © is rendered
If VA, VB, VC, VD are (0,0) then: c
— t0 =0 pixel at (2,1)
— t1l =0 pixel at (2,1)
— t2 =0 pixel at (2,1) D
— t3 =0 pixel at (2,1)

VD=(0,th) then:

— t0 =pixel Aat (1,1)
— t1 = pixel B at (3,1)
— t2 = pixel C at (2,0)
— t3 =pixel D at (2,2)

Conference NVIDIA Corporation, Santa Clara, CA



o Sampling From Neighbors

e Same pattern is sampled for each pixel
rendered to the destination

e When pixel o is rendered, it samples from:

— t0 = pixel E c
— t1 = pixel D
— t2 = pixel A A|lO |B
— t3 = pixel F =l o | b
F
O 1 2 3
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Example 2: Samples Processed
. 1IN PIXel Shader

e Do whatever math you like
out color = (10 + t1 + t2 + t3)/4
out color = (t0-t1) CROSS (t2-t3)
etc...

(tO + t1 + t2 + t3)/4

—

Src dest

Conference NVIDIA Corporation, Santa Clara, CA
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o Simple Fire Effect

Source "Embers”

Texture 1

o/ [mmse | ™
blur + scroll blur + scroll
\:extumz /
a. b.
< Blur and scroll upward A
< Trails of blur emerge from ,/v/ Y
bright source ‘embers’ at the YC YA Tye
bottom VD

Conference
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< Fire Effect

e Jitter texture sampling
— Vary VA..VD offsets for a wind effect

— Turbulence: Tessellate underlying geometry and
jitter texture coords or positions

e Change color averaging multiplier
— Brighten or extinguish the smoke
— Change its color as it rises

e How to improve:
— Better jitter patterns (not random jumps)
— Re-map colors
e Dependent texture read
— Use a real physics model!
« Mark will elaborate
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< Cellular Automata

e Great for generating noise and other animated patterns to use in
blending
e Game of Life in a Pixel Shader
— Cell ‘state’ relative to the rules is computed at each texel
— Dependent texture read
— State accesses ‘rules’ table, which is a texture

e Highly complex rules are easy!

Creen channel Dependent green-bluee
neighbor count address operation
cE~mn R EEidae?
(IFN
Blue channel {11
on/off state d. Rules map e.
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< \Water Simulation

e Used in Morrowind, Tiger Woods,
Dark Age of Camelot, ...

e Real physics
e 3 main parts, all done on the GPU

— Animate water height

— Convert height to surface normal map to
render shading and reflections

— Couple two simulations together
e One for local unique detail
e One for tiled endless water surface
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< Water Simulation Details

e Physics in glorious 8-bit precision
— 8 bits is enough, barely!
e Each texel is one point on water surface

e Each texel holds
— Water height, H
— Velocity, V
— Force, F - computed from height of neighbors

e Damped + Driven system
— Not “stability”, but consistent behavior over time
— Easier and faster than true conservation methods
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< \Water Simulation Details

e Discretizing a 2D wave equation to a uniform grid
gives equations which sample neighbors

— Physics on a grid of points uses neighbor sampling

e Derivatives (slopes) in partial differential equations
(PDEs) turn into neighbor sampling on a grid

e See [Lengyel] or [Gomez] for great derivations
e Textures + Neighbor Sampling are all we need

e Math is flexible — Use Intuition!
— And a spring-mass system
— The math is nearly identical to PDE derivation
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< Water Simulation Details

e Height texels are connected to neighbors
with springs
e Force acting on HO from spring connecting

HO to H1
- F= k*(H1-HO0)
— Kk Is spring strength constant H1

— Always pulls HO toward H1

— HO, H1 are 8-bit color values
e F=k*(H1+H2+H3+H4-4*HO) H3
e VV=V+cl*F
e HO'=HO +c2*V

— c¢1, c2 are constants (mass,time)

H4 | HO | H2
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< \Water Simulation Details

e Height current (HTNn), previous (HTn-1)
e Force partial (F1), force total (F2)
e Velocity current (VTn), previous (VTn-1)
e Use 1 color channel for each
F =red; V =green; H = blue and alpha
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< \Water Simulation

e Local detail simulation coupled to tiled
texture simulation

e 2 simulations using 256x256 textures

GameDevelopers
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o The Tricky Parts

e Procedural animation
— Have to find the right rules
— Stability
e You can use cheesy hacks

e Consistent behavior over time is all that
matters

— Learning curve for artistic control
e But you can expose intuitive controls

 Precision
e Texture sample placement

Conference NVIDIA Corporation, Santa Clara, CA
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<« Rules & Stability

e The right rules
— Lots of physical simulation literature
— Good to adapt and simplify
— Free public source code
e Stability
— Tough using 8-bit values (2002 HW)

— Damped + Driven system
e Damped: looses energy, comes to rest

e Driven: add just enough excitations to stay
Interesting

e Not stable, but it looks and acts like it is!
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< Precision

e A8B8R8G8BS8 is good for many things

e Direct3D9 HW supports higher precision
— 32 bits per channel, floating point render targets

e High precision can be emulated using 2 or
more 8-bit channels [Strzodka] [Rumpf]

— Other ways for variable precision and fast ADD
and SUB

e Can emulate 12, 15, 18, 21, 24, 27, 32 bits
per component

e Encode, decode, add, subtract, multiply,
arbitrary functions (from textures)

e NVIDIA volume fog demo

Conference NVIDIA Corporation, Santa Clara, CA
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o Sample Placement

e Subtle issue. Easy to deal with

e D3D and OpenGL sample differently
— D3D samples from texel corner
— OpenGL samples from texel center
e (Can cause problems with bilinear sampling

e Solution: Add half-texel sized offset with D3D

O = pixel rendered
Y tex coord = (2,1)
O X X =tex sample taken
N from here
offset
D3D OpenGt
NVIDIA Corporation, Santa Clara, CA
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< Let’'s Get Serious

e |'ve iIntroduced the basics and some
fast-and-loose approaches

e Mark will now present more rigorous
solutions and sophisticated methods

e GPUs are ripe for complex, interesting
physical simulation!

Conference NVIDIA Corporation, Santa Clara, CA



@ Lattice Computations

e Greg’s been talking about them

e How far can we take them?

— Anything we can describe with discrete PDE
equations!

e Discrete In space and time
— Also other approximations

Conference
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ﬁ Approximate Methods

e Several different approximations
— Cellular Automata (CA)
— Coupled Map Lattice (CML)
— Lattice-Boltzmann Methods (LBM)

e Greg talked about CA
— I'll talk about CML

Conference
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@ Coupled Map Lattice

e Mapping:

— Continuous state - lattice nodes
e Coupling:

— Nodes interact with each other to

produce new state according to
specified rules

Conference
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@ Coupled Map Lattice

e CML Introduced by Kaneko (1980s)

— Used CML to study spatio-temporal chaos

— Others adapted CML to physical simulation:
e Boiling [Yanagita 1992]
e Convection [Yanagita 1993]
e Clouds [Yanagita 1997; Miyazaki 2001]
e Chemical reaction-diffusion [Kapral ‘93]
e Saltation (sand ripples /7 dunes) [ Nishimori ‘93]
e And more

Conference
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ﬁ CML vs. CA

e CML extends cellular automata (CA)

Continuous

GameDevelopers
Conference
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ﬁ CML vs. CA

e Continuous state 1s more useful

— Discrete: physical quantities difficult
e Must filter over many nodes to get “real” values

— Continuous: physical quantities easy
 Real physical values at each node
e Temperature, velocity, concentration, etc.

Conference
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@ Rules?

e CML updated via simple, local rules

— Simple: same rule applied at every cell
(SIMD)

— Local: cells updated according to some
function of their neighbors’ state

Conference
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ﬁ Example: Buoyancy

e Used In temperature-based boiling
simulation

e At each cell:

— If neighbors to left and right of cell are
warmer, raise the cell’s temperature

— If neighbors are cooler, lower its
temperature

Conference
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%y CML Operations

e Implement operations as building blocks for
use in multiple simulations
— Diffusion
— Buoyancy (2 types)
— Latent Heat
— Advection
— Viscosity / Pressure
— Gray-Scott Chemical Reaction
— Boundary Conditions
— User interaction (drawing)
— Transfer function (color gradient)

Conference
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ﬁ Anatomy of a CML operation

e Neighbor Sampling
— Select and read values, V, of nearby cells
e Computation on Neighbors

— Compute f(V) for each sample (f can be
arbitrary computation)

e Combine new values (arithmetic)
e Store new values back In lattice

Conference
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@ Graphics Hardware

e Why use It?
— Speed: up to 25x speedup in our sims
— GPU perf. grows faster than CPU perf.
— Cheap: GeForce 4 Ti 4200 < $130
— Load balancing in complex applications
e Why not use It?
— Low precision computation (not anymore!)
— Difficult to program (not anymore!)

Conference
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%y Hardware Implementation (GF4)

f(Neighbor 1)

Select Sample /{Neighbor 2) e
Neighbors Neighbors ampies

- : (Arithmetic)
f(Neighbor n)

Combine

Vertex Texture Unit 0 Textiire

Program Texture Texture Unit 1 Blending
(Set Texture Shaders (Register

Coordinates : '
) Texture Unit n Combiners)

Conference
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@ Example Simulations

 Implemented multiple simulations on
GeForce 4 Ti. LEAte o
e Examples: “

— Boiling (2D and 3D)

— Rayleigh-Bénard Convection (2D)

GameDevelopers
Conference
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ﬁ Boiling

e [Yanagita 1992]
e State = Temperature

e Three operations:
— Diffusion, buoyancy,

latent heat
— 7 passes in 2D,
O per 3D slice

Conference
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@ Rayleigh-Bénard Convection

e [Yanagita & Kaneko 1993]
e State = temp. (scalar) + velocity (vector)

e Three operations (10 passes).
— Diffusion, advection, and viscosity / pressure

Conference
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ﬁ PDE Simulations

 Floating-point GPUs open up new
possibilities
— Less Ad Hoc methods: real PDEs
— Must be able to discretize in space Iin time

e I'll discuss two examples:

— Reaction Diffusion
— Stable Fluids

Conference
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ﬁ Reaction-Diffusion

e Gray-Scott reaction-diffusion model [Pearson 1993]
e State = two scalar chemical concentrations

e Simple: just diffusion and reaction ops

e 2 passesin 2D, 3 per 3D slice

Conference
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‘%, Gray-Scott PDEs
U N

" =|D,N°U|-|UV? + F(1- U),
111\: =[D.NVHUV? - (F +k)V

Diffusion Reaction

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



@ Stable Fluids

e Solution of Navier-Stokes fluid flow eqgs.

— Stable for large time steps
e Means you can run it fast!

— [Stam 1999], [Fedkiw et al 2001]
e Can be implemented on latest GPUs

Conference
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ﬁ Navier-Stokes Equations

e Describe fluid flow
over time

u ~ 1 -~ ~
Tu_. (uXN)u- =Np-nN°u +f
ﬂt /4 / I /4
Advection Pressure Diffusion Externa Force
Gradient (viscosity)

N>XJ =0 <«— vdocity is divergence-free

Conference
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% Divergence-Free?

 In any element of fluid, the velocity
Into the element must be balanced by
velocity out of the element

— No sources or sinks
e Ensures mass conservation

—= o4

Conference
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Ty, Stable Fluids Implementation

4 Basic Steps:

1. Add force to velocity field

e Gravity, user interaction forces, etc.

— Simple fragment program — scale force by dt,
add to velocity.

2. Advect

e Velocity and other quantities get carried along
by velocity field

3. Diffuse

e Viscous fluids only
e Implementation very similar to step 4

4. Remove divergence

Conference
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‘%, Advection

e At each time step. Fluid P

“particles” moved by fluid &~ -
velocit &\A
y — —
e Want velocity at position x ™~ \p(x t+h)
at new time t +h \ \\\

e Follow velocity field back in
time from x
— Like tracing particles! \ \ \ \
>

— Easy to implementin a _
fragment program: Path of fluid

s

u(x,t +h) =u(x- hu(x,t),t) Trace back in time

Conference
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ﬁ Simplify the Divergence Problem

e Stam uses the Helmholtz-Hodge
decomposition:
— Any vector field w can be decomposed into this form:

w =u+Np
e Where u has zero divergence, and p is a scalar field
 If we dot both sides of above with N , we get

Nxv =N?p (since N>u=0)

e Solve for p, thenuisjust U =W - Np

Conference
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‘%, Poisson-Pressure Solution

e It turns out that N°p=N>w is a Poisson Eq.
— pis the pressure of the fluid
— w is the velocity after steps 1-3 (divergence! 0)

* So, just solve this Poisson-Pressure eq. for p,
and subtract Np from the velocity after step 3
to get divergence free velocity

e The viscosity term is similar — also a Poisson
equation — so we can use the same solution

technique

Conference
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‘% How do | solve it?

e Discretize the equation, solve using an iterative
matrix solver (relaxation)
— Jacobi, Gauss-Seidel, SOR, Conjugate Gradient, etc.

e On the GPU, Jacobi is easy, the rest are tricky
e | use Jacobi iteration (several iterations usually enough)

— Since the matrix is sparse, it boils down to repeated
evaluation of:

n+l _ 1- n n n n N
Q,jl _Z(qiﬂ,j +qi-1,j +Qi,j+1+Q,j-1' dz(N >‘W)),

~ _ d = grid spacing

N > __(ui+1,j ) ui-1,j +Vi,j+1 ) Vi,j-l) u, v = components of w
2d I,] = grid coordinates

n = solution iteration

Conference
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@ Stable Fluids

e See Jos Stam’s talk here at GDC for
detalls.

— His papers are also very clear.

e GPU fluids demo (source code
available)

Conference
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‘%, Hardware Limitations

e Precision, precision, precision!

— 8 or 9 bits is far from enough

e You have to be tricky on GeForce 4, Radeon
8500, etc.

e Solved on GeForce FX, Radeon 9700
— Diffusion is very susceptible to precision
problems
e Many natural phenomena are diffusive!
— High dynamic range simulations very
susceptible

e Convection, reaction-diffusion, fluids
e Not boiling — relatively small range of values

Conference
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‘%, Future Work

 Explore simulation techniques / issues on
graphics hardware
— Other PDE solution techniques
— More complex simulations
— High dynamic range simulations
— Easy to use framework for lattice simulations

e Applications:
— Interactive environments, games
— Scientific Computation
— Dynamic painting / modeling applications
— Dynamic procedural texture synthesis
— Dynamic procedural model synthesis

Conference
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‘%, General Purpose GPUs

e A growing trend: GPGPU
— In both academia and industry

e GPUs are capable parallel processors
— Useful for more than just graphics!

e A catalog of recent GPGPU research:
— http://www.cs.unc.edu/—harrism/gpgpu

— A large variety of applications:

e Physical simulation, solving sparse linear systems,
iImage processing, computer vision, neural networks,
scene reconstruction, computational geometry, large
matrix-matrix multiplication, voronoi diagrams,
motion planning, collision detection...

Conference
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@ Conclusion

GPUs are a capable, efficient, and
flexible platform for physically-
based visual simulation

Go add cool dynamic phenomena
to your games!
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For More Information

e http://www.cs.unc.edu/—harrism/cml

e http://www.cs.unc.edu/—harrism/gpgpu
e http://developer.nvidia.com

e Email harrism@cs.unc.edu

e Email gjames@nvidia.com
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