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Physically-Based Simulation
• Games are using it

– Newtonian physics on the CPU
• Rigid body dynamics, projectile and particle 

motion, inverse kinematics

– PDEs and non-linear fun on the CPU/VPU
• Water simulation (geometry), special effects

• It’s cool, but computationally expensive
– Complex non-rigid body dynamics & effects

• Water, fire, smoke, fluid flow, glow and HDR

– High data bandwidth
– Lots of math.  Much can be done in parallel
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Physically-Based Simulation
• Graphics processors are perfect for 

many simulation algorithms
– GeForce 3, 4, GeForce FX, Radeon 9xxx
– Direct3D8, Direct3D9 support

• Free parallelism, GFlops of math, 
vector processors
– 500 Mhz * 8 pix/clk * 4-floats/pixel = 16 GFlops

• Current generation has 16 and 32-bit 
float precision throughout
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Games Doing Simulation and Effects 
on the GPU
(partial list)
• PC

– Elder Scrolls III:  Morrowind
– Dark Age of Camelot
– Tron 2.0 
– Tiger Woods 2.0
– 3DMark2003

• XBox
– Halo 2
– Wreckless

• PS2
– Baldur’s Gate:  Dark Alliance
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Visual Simulation
• Goal is visual interest

– Not numerical accuracy
– Often not physical accuracy,  just the right feel

• Approximations and home-brew methods produce great results
– Dynamic scenes, interesting reaction to inputs
– If the user is convinced, the method, math, and stability don’t 

matter!!

• 8-bit math and results are ok  (last year’s hardware)

Elder Scrolls III:  Morrowind
Bethesda Softworks
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Practical Techniques

• Interesting phenomena
– Useful in real-time scenes

• Interactive:  Can react to characters, 
events, and the environment

• Effects themselves run at 150-500 fps
– Doesn’t kill your framerate

• Free modular source code
• Developer support

– Just ask!
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How Does It Work?
• Graphics processor renders colors

– 8 bits per channel or 32 bits per channel

• Colors store the state of the simulation
– Blue = 1D position,  Green = velocity,  Red = force

– RGB1 = 3D position, RGB2 = 3D velocity

• Rendered colors are read back in and used 
to render new colors (the next time step) 
– Render To Texture (“RTT”)
– Redirect color to a vertex stream (coming soon to OGL)

• Iterate, storing temporaries and results in video 
memory textures
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The Result
• Graphics hardware textures are used to create 

or animate other textures
• Animated textures can be used in the scene

– Data & temporaries might never been seen

• Fast, endless, non-repeating or repeating 
• A little video memory can go a long way!

– Much less storage than ‘canned’ animation
– 2  textures can make an endless  animation

DISPLAY

RTT

RTT
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What Can We Do?

• Blur and glow
• Animated blur, dissolves, distortions
• Animated bump maps

– Normal maps, EMBM du/dv maps

• Cellular Automata (CA)
– Noise, animated patterns
– Allows for very complex rules

• Physical Simulation
– On N-dimensional grids

• CA, CML, LBM
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How to do it
• Objective - Keep it ALL on the GPU!

– Efficient calculation
– No CPU or GPU pipeline stalls for synchronization
– No AGP texture transfer between CPU and GPU
– Saves a ton of CPU MHz

• Geometry drives the processing
• Programmable Pixel Shaders do the math  

– Each Texture Coordinate reads data from specific location
• Location is absolute or relative to pixel being rendered 

– N  texture fetches gives  N  RGBA data inputs
• Sample neighboring texels, or any texels
• Compute slopes, derivatives, gradients, divergence
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Geometry Drives Processing
• Textures store input, 

temporary, and final 
results

• Geometry’s texture 
coordinates get 
interpolated

• Fetch texture data at 
interpolated coords

• Do calculations on the 
texture data in the 
programmable pixel 
shader

Texture Surface
Render Target

RENDER

Geometry

Texture

Texture

Texture
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Example 1:  Sample and 
Combine Each Texel’s Neighbors

• Source texture ‘src’ is (x,y) texels in size
– SetTexture(0, src);
– SetTexture(1, src);
– SetTexture(2, src);
– SetTexture(3, src);

• texel width ‘tw’ = 1/x
• texel height ‘th’ = 1/y

• Render target is also a texture (x,y) 
pixels in size
– SetRenderTarget(dest_tex);

D

A

C

B
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Example 1 Contd.
• Render a quad exactly covering the 

render target
– Texture coords from (0,0) to (1,1)
– Unmodified, these would copy the 

source exactly into the dest

• Vertex Shader reads input 
coordinate ‘tc0’

• Writes 4 output coordinates
– Each coordinate offset by a different 

vector:  VA, VB, VC, VD
VA = (-tw, 0, 0, 0)
VD = (0, th, 0, 0)
out_T0 = tc0 + VA
out_T1 = tc0 + VB
out_T2 = tc0 + VC
out_T3 = tc0 + VD

Quad

tc0 = (0,0)

tc0 = (1,1)

VD

VA

VC

VB
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Example 1 Contd.
• The offset coordinates translate the source 

textures, so that a pattern of neighbors is 
sampled for each pixel rendered

=

VC

VB

VA

src

src

src

src



NVIDIA Corporation, Santa Clara, CA 

Sampling From Neighbors
• When destination pixel,     is rendered
If   VA, VB, VC, VD  are (0,0) then:

– t0 =    pixel at (2,1)
– t1 =    pixel at (2,1)
– t2 =    pixel at (2,1)
– t3 =    pixel at (2,1)

If   VA=(-tw,0), VB=(tw,0), VC=(0,-th)
VD=(0,th)   then:
– t0 = pixel A at (1,1)
– t1 = pixel B at (3,1)
– t2 = pixel C at (2,0)
– t3 = pixel D at (2,2)

D

A

C

B

0    1     2     3
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Sampling From Neighbors
• Same pattern is sampled for each pixel 

rendered to the destination

• When pixel     is rendered, it samples from:

– t0 = pixel E
– t1 = pixel D
– t2 = pixel A
– t3 = pixel F

D

A

C

B

0    1     2     3

F

E
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Example 2:  Samples Processed 
in Pixel Shader

• Do whatever math you like
out color = (t0 + t1 + t2 + t3)/4
out color = (t0-t1) CROSS (t2-t3)
etc...

src dest

(t0 + t1 + t2 + t3)/4
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Simple Fire Effect

Blur and scroll upward
Trails of blur emerge from 
bright source ‘embers’ at the 
bottom VD

VAVC VB
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Fire Effect
• Jitter texture sampling

– Vary  VA..VD  offsets for a wind effect
– Turbulence:  Tessellate underlying geometry and 

jitter texture coords or positions
• Change color averaging multiplier

– Brighten or extinguish the smoke
– Change its color as it rises

• How to improve:
– Better jitter patterns (not random jumps)
– Re-map colors

• Dependent texture read
– Use a real physics model!

• Mark will elaborate
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Cellular Automata
• Great for generating noise and other animated patterns to use in

blending
• Game of Life in a Pixel Shader

– Cell ‘state’ relative to the rules is computed at each texel 
– Dependent texture read 
– State accesses ‘rules’ table, which is a texture

• Highly complex rules are easy!
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Water Simulation
• Used in Morrowind, Tiger Woods, 

Dark Age of Camelot, ...
• Real physics
• 3 main parts, all done on the GPU

– Animate water height
– Convert height to surface normal map to 

render shading and reflections
– Couple two simulations together

• One for local unique detail
• One for tiled endless water surface



NVIDIA Corporation, Santa Clara, CA 

Water Simulation Details

• Physics in glorious 8-bit precision
– 8 bits is enough, barely!

• Each texel is one point on water surface
• Each texel holds

– Water height,   H
– Velocity,   V
– Force,   F       - computed from height of neighbors

• Damped + Driven system 
– Not “stability”,  but consistent behavior over time
– Easier and faster than true conservation methods
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Water Simulation Details

• Discretizing a 2D wave equation to a uniform grid 
gives equations which sample neighbors
– Physics on a grid of points uses neighbor sampling

• Derivatives (slopes) in partial differential equations 
(PDEs) turn into neighbor sampling on a grid

• See [Lengyel] or [Gomez] for great derivations
• Textures + Neighbor Sampling are all we need
• Math is flexible – Use Intuition!

– And a spring-mass system
– The math is nearly identical to PDE derivation
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Water Simulation Details
• Height  texels are connected to neighbors 

with springs
• Force acting on H0 from spring connecting 

H0 to H1
– F  =   k * ( H1 – H0 )
– k is spring strength constant
– Always pulls H0 toward H1
– H0, H1  are 8-bit color values

• F = k * ( H1 + H2 + H3 + H4 – 4*H0 )
• V’ = V + c1 * F
• H0’ = H0 + c2 * V’ 

– c1,  c2  are constants (mass,time)

H3

H4

H1

H2H0
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Water Simulation Details

• Height current (HTn), previous (HTn-1)
• Force partial (F1), force total (F2) 
• Velocity current (VTn), previous (VTn-1)
• Use 1 color channel for each

F = red;  V = green;  H = blue and alpha
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Water Simulation
• Local detail simulation coupled to tiled 

texture simulation
• 2   simulations using 256x256 textures
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The Tricky Parts
• Procedural animation

– Have to find the right rules
– Stability

• You can use cheesy hacks
• Consistent behavior over time is all that 

matters

– Learning curve for artistic control
• But you can expose intuitive controls

• Precision
• Texture sample placement
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Rules & Stability

• The right rules
– Lots of physical simulation literature
– Good to adapt and simplify
– Free public source code

• Stability
– Tough using 8-bit values (2002 HW)
– Damped + Driven system

• Damped:  looses energy, comes to rest
• Driven:  add just enough excitations to stay 

interesting
• Not stable, but it looks and acts like it is!
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Precision
• A8R8G8B8 is good for many things
• Direct3D9 HW supports higher precision

– 32 bits per channel, floating point render targets

• High precision can be emulated using 2 or 
more 8-bit channels [Strzodka] [Rumpf] 
– Other ways for variable precision and fast ADD 

and SUB 

• Can emulate 12, 15, 18, 21, 24, 27, 32  bits 
per component

• Encode, decode, add, subtract, multiply, 
arbitrary functions (from textures)

• NVIDIA volume fog demo
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Sample Placement
• Subtle issue.  Easy to deal with
• D3D and OpenGL sample differently

– D3D samples from texel corner
– OpenGL samples from texel center

• Can cause problems with bilinear sampling
• Solution:  Add half-texel sized offset with D3D

D3D OpenGL

O  = pixel rendered
tex coord = (2,1)
x = tex sample taken

from here

x
x

offset
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Let’s Get Serious

• I’ve introduced the basics and some 
fast-and-loose approaches

• Mark will now present more rigorous 
solutions and sophisticated methods

• GPUs are ripe for complex, interesting 
physical simulation!
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Lattice Computations
• Greg’s been talking about them
• How far can we take them?

– Anything we can describe with discrete PDE 
equations!
• Discrete in space and time

– Also other approximations
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Approximate Methods
• Several different approximations

– Cellular Automata (CA)
– Coupled Map Lattice (CML)
– Lattice-Boltzmann Methods (LBM)

• Greg talked about CA
– I’ll talk about CML
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Coupled Map Lattice
• Mapping:

– Continuous state à lattice nodes

• Coupling:
– Nodes interact with each other to 

produce new state according to 
specified rules
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Coupled Map Lattice

• CML introduced by Kaneko (1980s)
– Used CML to study spatio-temporal chaos
– Others adapted CML to physical simulation:

• Boiling [Yanagita 1992]
• Convection [Yanagita 1993]
• Clouds [Yanagita 1997; Miyazaki 2001]
• Chemical reaction-diffusion [Kapral ‘93]
• Saltation (sand ripples / dunes) [ Nishimori ‘93]
• And more
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CML vs. CA

• CML extends cellular automata (CA)

ContinuousContinuousDiscreteSTATE

DiscreteDiscreteTIME

DiscreteDiscreteSPACE

CMLCA
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CML vs. CA

• Continuous state is more useful
– Discrete: physical quantities difficult

• Must filter over many nodes to get “real” values

– Continuous: physical quantities easy
• Real physical values at each node
• Temperature, velocity, concentration, etc.
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Rules?
• CML updated via simple, local rules

– Simple: same rule applied at every cell 
(SIMD)

– Local: cells updated according to some 
function of their neighbors’ state
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Example: Buoyancy
• Used in temperature-based boiling 

simulation
• At each cell:

– If neighbors to left and right of cell are 
warmer, raise the cell’s temperature

– If neighbors are cooler, lower its 
temperature
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CML Operations
• Implement operations as building blocks for 

use in multiple simulations
– Diffusion
– Buoyancy (2 types)
– Latent Heat
– Advection
– Viscosity / Pressure
– Gray-Scott Chemical Reaction
– Boundary Conditions
– User interaction (drawing)
– Transfer function (color gradient)
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Anatomy of a CML operation

• Neighbor Sampling

– Select and read values, v, of nearby cells

• Computation on Neighbors

– Compute f(v) for each sample (f can be 
arbitrary computation)

• Combine new values (arithmetic)
• Store new values back in lattice



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Graphics Hardware

• Why use it?
– Speed: up to 25x speedup in our sims
– GPU perf. grows faster than CPU perf.
– Cheap: GeForce 4 Ti 4200 < $130
– Load balancing in complex applications

• Why not use it?
– Low precision computation (not anymore!)
– Difficult to program (not anymore!)
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Hardware Implementation (GF4)
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Example Simulations

• Implemented multiple simulations on 
GeForce 4 Ti.  

• Examples:

– Boiling (2D and 3D)

– Rayleigh-Bénard Convection (2D)



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boiling
• [Yanagita 1992]
• State = Temperature
• Three operations:

– Diffusion, buoyancy, 
latent heat

– 7 passes in 2D, 
9 per 3D slice
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Rayleigh-Bénard Convection

• [Yanagita & Kaneko 1993]
• State = temp. (scalar) + velocity (vector)
• Three operations (10 passes):

– Diffusion, advection, and viscosity / pressure



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PDE Simulations
• Floating-point GPUs open up new 

possibilities
– Less Ad Hoc methods: real PDEs
– Must be able to discretize in space in time

• I’ll discuss two examples:
– Reaction Diffusion
– Stable Fluids
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Reaction-Diffusion

• Gray-Scott reaction-diffusion model [Pearson 1993]
• State = two scalar chemical concentrations
• Simple: just diffusion and reaction ops
• 2 passes in 2D, 3 per 3D slice
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Gray-Scott PDEs

2 2

2 2

(1 ),

( )

u

v

U
D U UV F U

t
V

D V UV F k V
t

∂
= ∇ − + −

∂
∂

= ∇ + − +
∂

Diffusion Reaction
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Stable Fluids

• Solution of Navier-Stokes fluid flow eqs.
– Stable for large time steps

• Means you can run it fast!

– [Stam 1999], [Fedkiw et al 2001]

• Can be implemented on latest GPUs
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Navier-Stokes Equations
• Describe fluid flow 

over time

21
( ) p

t
ν

ρ
∂

= − ⋅∇ − ∇ − ∇ +
∂
u

u u u f

Advection Pressure
Gradient

Diffusion 
(viscosity)

External Force

0∇ ⋅ =u Velocity is divergence-free
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Divergence-Free?
• In any element of fluid, the velocity 

into the element must be balanced by 
velocity out of the element
– No sources or sinks

• Ensures mass conservation
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Stable Fluids Implementation

4 Basic Steps: 
1. Add force to velocity field 

• Gravity, user interaction forces, etc.
– Simple fragment program – scale force by dt, 

add to velocity.

2. Advect
• Velocity and other quantities get carried along 

by velocity field

3. Diffuse
• Viscous fluids only
• Implementation very similar to step 4

4. Remove divergence
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Advection
• At each time step. Fluid 

“particles” moved by fluid 
velocity

• Want velocity at position x
at new time t + h

• Follow velocity field back in 
time from x
– Like tracing particles!
– Easy to implement in a 

fragment program:

p(x, t+h)

p(x, t)

Path of fluid

Trace back in time( , ) ( ( , ), )t h h t t+ = −u x u x u x
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• Stam uses the Helmholtz-Hodge 
decomposition:
– Any vector field w can be decomposed into this form:

• Where u has zero divergence, and p is a scalar field

• If we dot both sides of above with      , we get  

• Solve for p, then u is just

Simplify the Divergence Problem

p= + ∇w u

p= − ∇u w

2 p∇ ⋅ = ∇w (Since                  )0∇ ⋅ =u

∇
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Poisson-Pressure Solution
• It turns out that                     is a Poisson Eq.

– p is the pressure of the fluid
– w is the velocity after steps 1-3 (divergence ≠ 0)

• So, just solve this Poisson-Pressure eq. for p, 
and subtract       from the velocity after step 3 
to get divergence free velocity

• The viscosity term is similar – also a Poisson 
equation – so we can use the same solution 
technique

2 p∇ = ∇ ⋅ w

p∇
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How do I solve it?
• Discretize the equation, solve using an iterative 

matrix solver (relaxation)
– Jacobi, Gauss-Seidel, SOR, Conjugate Gradient, etc.

• On the GPU, Jacobi is easy, the rest are tricky
• I use Jacobi iteration (several iterations usually enough)

– Since the matrix is sparse, it boils down to repeated 
evaluation of:

( )1 2
, 1, 1, , 1 , 1

1, 1, , 1 , 1

1
( ) ,

4
1

( )
2

n n n n n
i j i j i j i j i j

i j i j i j i j

q q q q q

u u v v

δ

δ

+
+ − + −

+ − + −

= + + + − ∇⋅

∇⋅ = − + −

w

w
δ = grid spacing
u, v = components of w
i, j = grid coordinates
n = solution iteration
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Stable Fluids
• See Jos Stam’s talk here at GDC for 

details.
– His papers are also very clear.

• GPU fluids demo (source code 
available)
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Hardware Limitations
• Precision, precision, precision!

– 8 or 9 bits is far from enough
• You have to be tricky on GeForce 4, Radeon

8500, etc.
• Solved on GeForce FX, Radeon 9700

– Diffusion is very susceptible to precision 
problems
• Many natural phenomena are diffusive! 

– High dynamic range simulations very 
susceptible
• Convection, reaction-diffusion, fluids
• Not boiling – relatively small range of values
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Future Work
• Explore simulation techniques / issues on 

graphics hardware
– Other PDE solution techniques
– More complex simulations
– High dynamic range simulations
– Easy to use framework for lattice simulations

• Applications:
– Interactive environments, games
– Scientific Computation
– Dynamic painting / modeling applications
– Dynamic procedural texture synthesis
– Dynamic procedural model synthesis
– …
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General Purpose GPUs
• A growing trend: GPGPU

– In both academia and industry

• GPUs are capable parallel processors
– Useful for more than just graphics!

• A catalog of recent GPGPU research:
– http://www.cs.unc.edu/~harrism/gpgpu
– A large variety of applications:

• Physical simulation, solving sparse linear systems, 
image processing, computer vision, neural networks, 
scene reconstruction, computational geometry, large 
matrix-matrix multiplication, voronoi diagrams, 
motion planning, collision detection…
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Conclusion

GPUs are a capable, efficient, and 
flexible platform for physically-

based visual simulation

Go add cool dynamic phenomena 
to your games!
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For More Information
• http://www.cs.unc.edu/~harrism/cml
• http://www.cs.unc.edu/~harrism/gpgpu
• http://developer.nvidia.com
• Email harrism@cs.unc.edu
• Email gjames@nvidia.com
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