
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Physically-Based
Simulation on
Graphics Hardware

Mark J. Harris
UNC Chapel Hill

Greg James
NVIDIA Corp.

Elder Scrolls III: Morrowind

NVIDIA Corporation, Santa Clara, CA

Physically-Based Simulation
• Games are using it

– Newtonian physics on the CPU
• Rigid body dynamics, projectile and particle

motion, inverse kinematics

– PDEs and non-linear fun on the CPU/VPU
• Water simulation (geometry), special effects

• It’s cool, but computationally expensive
– Complex non-rigid body dynamics & effects

• Water, fire, smoke, fluid flow, glow and HDR

– High data bandwidth
– Lots of math. Much can be done in parallel

NVIDIA Corporation, Santa Clara, CA

Physically-Based Simulation
• Graphics processors are perfect for

many simulation algorithms
– GeForce 3, 4, GeForce FX, Radeon 9xxx
– Direct3D8, Direct3D9 support

• Free parallelism, GFlops of math,
vector processors
– 500 Mhz * 8 pix/clk * 4-floats/pixel = 16 GFlops

• Current generation has 16 and 32-bit
float precision throughout

NVIDIA Corporation, Santa Clara, CA

Games Doing Simulation and Effects
on the GPU
(partial list)
• PC

– Elder Scrolls III: Morrowind
– Dark Age of Camelot
– Tron 2.0
– Tiger Woods 2.0
– 3DMark2003

• XBox
– Halo 2
– Wreckless

• PS2
– Baldur’s Gate: Dark Alliance

NVIDIA Corporation, Santa Clara, CA

Visual Simulation
• Goal is visual interest

– Not numerical accuracy
– Often not physical accuracy, just the right feel

• Approximations and home-brew methods produce great results
– Dynamic scenes, interesting reaction to inputs
– If the user is convinced, the method, math, and stability don’t

matter!!

• 8-bit math and results are ok (last year’s hardware)

Elder Scrolls III: Morrowind
Bethesda Softworks

NVIDIA Corporation, Santa Clara, CA

Practical Techniques

• Interesting phenomena
– Useful in real-time scenes

• Interactive: Can react to characters,
events, and the environment

• Effects themselves run at 150-500 fps
– Doesn’t kill your framerate

• Free modular source code
• Developer support

– Just ask!

NVIDIA Corporation, Santa Clara, CA

How Does It Work?
• Graphics processor renders colors

– 8 bits per channel or 32 bits per channel

• Colors store the state of the simulation
– Blue = 1D position, Green = velocity, Red = force

– RGB1 = 3D position, RGB2 = 3D velocity

• Rendered colors are read back in and used
to render new colors (the next time step)
– Render To Texture (“RTT”)
– Redirect color to a vertex stream (coming soon to OGL)

• Iterate, storing temporaries and results in video
memory textures

NVIDIA Corporation, Santa Clara, CA

The Result
• Graphics hardware textures are used to create

or animate other textures
• Animated textures can be used in the scene

– Data & temporaries might never been seen

• Fast, endless, non-repeating or repeating
• A little video memory can go a long way!

– Much less storage than ‘canned’ animation
– 2 textures can make an endless animation

DISPLAY

RTT

RTT

NVIDIA Corporation, Santa Clara, CA

What Can We Do?

• Blur and glow
• Animated blur, dissolves, distortions
• Animated bump maps

– Normal maps, EMBM du/dv maps

• Cellular Automata (CA)
– Noise, animated patterns
– Allows for very complex rules

• Physical Simulation
– On N-dimensional grids

• CA, CML, LBM

NVIDIA Corporation, Santa Clara, CA

How to do it
• Objective - Keep it ALL on the GPU!

– Efficient calculation
– No CPU or GPU pipeline stalls for synchronization
– No AGP texture transfer between CPU and GPU
– Saves a ton of CPU MHz

• Geometry drives the processing
• Programmable Pixel Shaders do the math

– Each Texture Coordinate reads data from specific location
• Location is absolute or relative to pixel being rendered

– N texture fetches gives N RGBA data inputs
• Sample neighboring texels, or any texels
• Compute slopes, derivatives, gradients, divergence

NVIDIA Corporation, Santa Clara, CA

Geometry Drives Processing
• Textures store input,

temporary, and final
results

• Geometry’s texture
coordinates get
interpolated

• Fetch texture data at
interpolated coords

• Do calculations on the
texture data in the
programmable pixel
shader

Texture Surface
Render Target

RENDER

Geometry

Texture

Texture

Texture

NVIDIA Corporation, Santa Clara, CA

Example 1: Sample and
Combine Each Texel’s Neighbors

• Source texture ‘src’ is (x,y) texels in size
– SetTexture(0, src);
– SetTexture(1, src);
– SetTexture(2, src);
– SetTexture(3, src);

• texel width ‘tw’ = 1/x
• texel height ‘th’ = 1/y

• Render target is also a texture (x,y)
pixels in size
– SetRenderTarget(dest_tex);

D

A

C

B

NVIDIA Corporation, Santa Clara, CA

Example 1 Contd.
• Render a quad exactly covering the

render target
– Texture coords from (0,0) to (1,1)
– Unmodified, these would copy the

source exactly into the dest

• Vertex Shader reads input
coordinate ‘tc0’

• Writes 4 output coordinates
– Each coordinate offset by a different

vector: VA, VB, VC, VD
VA = (-tw, 0, 0, 0)
VD = (0, th, 0, 0)
out_T0 = tc0 + VA
out_T1 = tc0 + VB
out_T2 = tc0 + VC
out_T3 = tc0 + VD

Quad

tc0 = (0,0)

tc0 = (1,1)

VD

VA

VC

VB

NVIDIA Corporation, Santa Clara, CA

Example 1 Contd.
• The offset coordinates translate the source

textures, so that a pattern of neighbors is
sampled for each pixel rendered

=

VC

VB

VA

src

src

src

src

NVIDIA Corporation, Santa Clara, CA

Sampling From Neighbors
• When destination pixel, is rendered
If VA, VB, VC, VD are (0,0) then:

– t0 = pixel at (2,1)
– t1 = pixel at (2,1)
– t2 = pixel at (2,1)
– t3 = pixel at (2,1)

If VA=(-tw,0), VB=(tw,0), VC=(0,-th)
VD=(0,th) then:
– t0 = pixel A at (1,1)
– t1 = pixel B at (3,1)
– t2 = pixel C at (2,0)
– t3 = pixel D at (2,2)

D

A

C

B

0 1 2 3

NVIDIA Corporation, Santa Clara, CA

Sampling From Neighbors
• Same pattern is sampled for each pixel

rendered to the destination

• When pixel is rendered, it samples from:

– t0 = pixel E
– t1 = pixel D
– t2 = pixel A
– t3 = pixel F

D

A

C

B

0 1 2 3

F

E

NVIDIA Corporation, Santa Clara, CA

Example 2: Samples Processed
in Pixel Shader

• Do whatever math you like
out color = (t0 + t1 + t2 + t3)/4
out color = (t0-t1) CROSS (t2-t3)
etc...

src dest

(t0 + t1 + t2 + t3)/4

NVIDIA Corporation, Santa Clara, CA

Simple Fire Effect

Blur and scroll upward
Trails of blur emerge from
bright source ‘embers’ at the
bottom VD

VAVC VB

NVIDIA Corporation, Santa Clara, CA

Fire Effect
• Jitter texture sampling

– Vary VA..VD offsets for a wind effect
– Turbulence: Tessellate underlying geometry and

jitter texture coords or positions
• Change color averaging multiplier

– Brighten or extinguish the smoke
– Change its color as it rises

• How to improve:
– Better jitter patterns (not random jumps)
– Re-map colors

• Dependent texture read
– Use a real physics model!

• Mark will elaborate

NVIDIA Corporation, Santa Clara, CA

Cellular Automata
• Great for generating noise and other animated patterns to use in

blending
• Game of Life in a Pixel Shader

– Cell ‘state’ relative to the rules is computed at each texel
– Dependent texture read
– State accesses ‘rules’ table, which is a texture

• Highly complex rules are easy!

NVIDIA Corporation, Santa Clara, CA

Water Simulation
• Used in Morrowind, Tiger Woods,

Dark Age of Camelot, ...
• Real physics
• 3 main parts, all done on the GPU

– Animate water height
– Convert height to surface normal map to

render shading and reflections
– Couple two simulations together

• One for local unique detail
• One for tiled endless water surface

NVIDIA Corporation, Santa Clara, CA

Water Simulation Details

• Physics in glorious 8-bit precision
– 8 bits is enough, barely!

• Each texel is one point on water surface
• Each texel holds

– Water height, H
– Velocity, V
– Force, F - computed from height of neighbors

• Damped + Driven system
– Not “stability”, but consistent behavior over time
– Easier and faster than true conservation methods

NVIDIA Corporation, Santa Clara, CA

Water Simulation Details

• Discretizing a 2D wave equation to a uniform grid
gives equations which sample neighbors
– Physics on a grid of points uses neighbor sampling

• Derivatives (slopes) in partial differential equations
(PDEs) turn into neighbor sampling on a grid

• See [Lengyel] or [Gomez] for great derivations
• Textures + Neighbor Sampling are all we need
• Math is flexible – Use Intuition!

– And a spring-mass system
– The math is nearly identical to PDE derivation

NVIDIA Corporation, Santa Clara, CA

Water Simulation Details
• Height texels are connected to neighbors

with springs
• Force acting on H0 from spring connecting

H0 to H1
– F = k * (H1 – H0)
– k is spring strength constant
– Always pulls H0 toward H1
– H0, H1 are 8-bit color values

• F = k * (H1 + H2 + H3 + H4 – 4*H0)
• V’ = V + c1 * F
• H0’ = H0 + c2 * V’

– c1, c2 are constants (mass,time)

H3

H4

H1

H2H0

NVIDIA Corporation, Santa Clara, CA

Water Simulation Details

• Height current (HTn), previous (HTn-1)
• Force partial (F1), force total (F2)
• Velocity current (VTn), previous (VTn-1)
• Use 1 color channel for each

F = red; V = green; H = blue and alpha

NVIDIA Corporation, Santa Clara, CA

Water Simulation
• Local detail simulation coupled to tiled

texture simulation
• 2 simulations using 256x256 textures

NVIDIA Corporation, Santa Clara, CA

The Tricky Parts
• Procedural animation

– Have to find the right rules
– Stability

• You can use cheesy hacks
• Consistent behavior over time is all that

matters

– Learning curve for artistic control
• But you can expose intuitive controls

• Precision
• Texture sample placement

NVIDIA Corporation, Santa Clara, CA

Rules & Stability

• The right rules
– Lots of physical simulation literature
– Good to adapt and simplify
– Free public source code

• Stability
– Tough using 8-bit values (2002 HW)
– Damped + Driven system

• Damped: looses energy, comes to rest
• Driven: add just enough excitations to stay

interesting
• Not stable, but it looks and acts like it is!

NVIDIA Corporation, Santa Clara, CA

Precision
• A8R8G8B8 is good for many things
• Direct3D9 HW supports higher precision

– 32 bits per channel, floating point render targets

• High precision can be emulated using 2 or
more 8-bit channels [Strzodka] [Rumpf]
– Other ways for variable precision and fast ADD

and SUB

• Can emulate 12, 15, 18, 21, 24, 27, 32 bits
per component

• Encode, decode, add, subtract, multiply,
arbitrary functions (from textures)

• NVIDIA volume fog demo

NVIDIA Corporation, Santa Clara, CA

Sample Placement
• Subtle issue. Easy to deal with
• D3D and OpenGL sample differently

– D3D samples from texel corner
– OpenGL samples from texel center

• Can cause problems with bilinear sampling
• Solution: Add half-texel sized offset with D3D

D3D OpenGL

O = pixel rendered
tex coord = (2,1)
x = tex sample taken

from here

x
x

offset

NVIDIA Corporation, Santa Clara, CA

Let’s Get Serious

• I’ve introduced the basics and some
fast-and-loose approaches

• Mark will now present more rigorous
solutions and sophisticated methods

• GPUs are ripe for complex, interesting
physical simulation!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Lattice Computations
• Greg’s been talking about them
• How far can we take them?

– Anything we can describe with discrete PDE
equations!
• Discrete in space and time

– Also other approximations

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Approximate Methods
• Several different approximations

– Cellular Automata (CA)
– Coupled Map Lattice (CML)
– Lattice-Boltzmann Methods (LBM)

• Greg talked about CA
– I’ll talk about CML

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Coupled Map Lattice
• Mapping:

– Continuous state à lattice nodes

• Coupling:
– Nodes interact with each other to

produce new state according to
specified rules

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Coupled Map Lattice

• CML introduced by Kaneko (1980s)
– Used CML to study spatio-temporal chaos
– Others adapted CML to physical simulation:

• Boiling [Yanagita 1992]
• Convection [Yanagita 1993]
• Clouds [Yanagita 1997; Miyazaki 2001]
• Chemical reaction-diffusion [Kapral ‘93]
• Saltation (sand ripples / dunes) [Nishimori ‘93]
• And more

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CML vs. CA

• CML extends cellular automata (CA)

ContinuousContinuousDiscreteSTATE

DiscreteDiscreteTIME

DiscreteDiscreteSPACE

CMLCA

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CML vs. CA

• Continuous state is more useful
– Discrete: physical quantities difficult

• Must filter over many nodes to get “real” values

– Continuous: physical quantities easy
• Real physical values at each node
• Temperature, velocity, concentration, etc.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Rules?
• CML updated via simple, local rules

– Simple: same rule applied at every cell
(SIMD)

– Local: cells updated according to some
function of their neighbors’ state

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Example: Buoyancy
• Used in temperature-based boiling

simulation
• At each cell:

– If neighbors to left and right of cell are
warmer, raise the cell’s temperature

– If neighbors are cooler, lower its
temperature

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CML Operations
• Implement operations as building blocks for

use in multiple simulations
– Diffusion
– Buoyancy (2 types)
– Latent Heat
– Advection
– Viscosity / Pressure
– Gray-Scott Chemical Reaction
– Boundary Conditions
– User interaction (drawing)
– Transfer function (color gradient)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Anatomy of a CML operation

• Neighbor Sampling

– Select and read values, v, of nearby cells

• Computation on Neighbors

– Compute f(v) for each sample (f can be
arbitrary computation)

• Combine new values (arithmetic)
• Store new values back in lattice

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Graphics Hardware

• Why use it?
– Speed: up to 25x speedup in our sims
– GPU perf. grows faster than CPU perf.
– Cheap: GeForce 4 Ti 4200 < $130
– Load balancing in complex applications

• Why not use it?
– Low precision computation (not anymore!)
– Difficult to program (not anymore!)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Hardware Implementation (GF4)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Example Simulations

• Implemented multiple simulations on
GeForce 4 Ti.

• Examples:

– Boiling (2D and 3D)

– Rayleigh-Bénard Convection (2D)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boiling
• [Yanagita 1992]
• State = Temperature
• Three operations:

– Diffusion, buoyancy,
latent heat

– 7 passes in 2D,
9 per 3D slice

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Rayleigh-Bénard Convection

• [Yanagita & Kaneko 1993]
• State = temp. (scalar) + velocity (vector)
• Three operations (10 passes):

– Diffusion, advection, and viscosity / pressure

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PDE Simulations
• Floating-point GPUs open up new

possibilities
– Less Ad Hoc methods: real PDEs
– Must be able to discretize in space in time

• I’ll discuss two examples:
– Reaction Diffusion
– Stable Fluids

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Reaction-Diffusion

• Gray-Scott reaction-diffusion model [Pearson 1993]
• State = two scalar chemical concentrations
• Simple: just diffusion and reaction ops
• 2 passes in 2D, 3 per 3D slice

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Gray-Scott PDEs

2 2

2 2

(1),

()

u

v

U
D U UV F U

t
V

D V UV F k V
t

∂
= ∇ − + −

∂
∂

= ∇ + − +
∂

Diffusion Reaction

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Stable Fluids

• Solution of Navier-Stokes fluid flow eqs.
– Stable for large time steps

• Means you can run it fast!

– [Stam 1999], [Fedkiw et al 2001]

• Can be implemented on latest GPUs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Navier-Stokes Equations
• Describe fluid flow

over time

21
() p

t
ν

ρ
∂

= − ⋅∇ − ∇ − ∇ +
∂
u

u u u f

Advection Pressure
Gradient

Diffusion
(viscosity)

External Force

0∇ ⋅ =u Velocity is divergence-free

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Divergence-Free?
• In any element of fluid, the velocity

into the element must be balanced by
velocity out of the element
– No sources or sinks

• Ensures mass conservation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Stable Fluids Implementation

4 Basic Steps:
1. Add force to velocity field

• Gravity, user interaction forces, etc.
– Simple fragment program – scale force by dt,

add to velocity.

2. Advect
• Velocity and other quantities get carried along

by velocity field

3. Diffuse
• Viscous fluids only
• Implementation very similar to step 4

4. Remove divergence

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Advection
• At each time step. Fluid

“particles” moved by fluid
velocity

• Want velocity at position x
at new time t + h

• Follow velocity field back in
time from x
– Like tracing particles!
– Easy to implement in a

fragment program:

p(x, t+h)

p(x, t)

Path of fluid

Trace back in time(,) ((,),)t h h t t+ = −u x u x u x

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

• Stam uses the Helmholtz-Hodge
decomposition:
– Any vector field w can be decomposed into this form:

• Where u has zero divergence, and p is a scalar field

• If we dot both sides of above with , we get

• Solve for p, then u is just

Simplify the Divergence Problem

p= + ∇w u

p= − ∇u w

2 p∇ ⋅ = ∇w (Since)0∇ ⋅ =u

∇

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Poisson-Pressure Solution
• It turns out that is a Poisson Eq.

– p is the pressure of the fluid
– w is the velocity after steps 1-3 (divergence ≠ 0)

• So, just solve this Poisson-Pressure eq. for p,
and subtract from the velocity after step 3
to get divergence free velocity

• The viscosity term is similar – also a Poisson
equation – so we can use the same solution
technique

2 p∇ = ∇ ⋅ w

p∇

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

How do I solve it?
• Discretize the equation, solve using an iterative

matrix solver (relaxation)
– Jacobi, Gauss-Seidel, SOR, Conjugate Gradient, etc.

• On the GPU, Jacobi is easy, the rest are tricky
• I use Jacobi iteration (several iterations usually enough)

– Since the matrix is sparse, it boils down to repeated
evaluation of:

()1 2
, 1, 1, , 1 , 1

1, 1, , 1 , 1

1
() ,

4
1

()
2

n n n n n
i j i j i j i j i j

i j i j i j i j

q q q q q

u u v v

δ

δ

+
+ − + −

+ − + −

= + + + − ∇⋅

∇⋅ = − + −

w

w
δ = grid spacing
u, v = components of w
i, j = grid coordinates
n = solution iteration

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Stable Fluids
• See Jos Stam’s talk here at GDC for

details.
– His papers are also very clear.

• GPU fluids demo (source code
available)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Hardware Limitations
• Precision, precision, precision!

– 8 or 9 bits is far from enough
• You have to be tricky on GeForce 4, Radeon

8500, etc.
• Solved on GeForce FX, Radeon 9700

– Diffusion is very susceptible to precision
problems
• Many natural phenomena are diffusive!

– High dynamic range simulations very
susceptible
• Convection, reaction-diffusion, fluids
• Not boiling – relatively small range of values

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Future Work
• Explore simulation techniques / issues on

graphics hardware
– Other PDE solution techniques
– More complex simulations
– High dynamic range simulations
– Easy to use framework for lattice simulations

• Applications:
– Interactive environments, games
– Scientific Computation
– Dynamic painting / modeling applications
– Dynamic procedural texture synthesis
– Dynamic procedural model synthesis
– …

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

General Purpose GPUs
• A growing trend: GPGPU

– In both academia and industry

• GPUs are capable parallel processors
– Useful for more than just graphics!

• A catalog of recent GPGPU research:
– http://www.cs.unc.edu/~harrism/gpgpu
– A large variety of applications:

• Physical simulation, solving sparse linear systems,
image processing, computer vision, neural networks,
scene reconstruction, computational geometry, large
matrix-matrix multiplication, voronoi diagrams,
motion planning, collision detection…

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Conclusion

GPUs are a capable, efficient, and
flexible platform for physically-

based visual simulation

Go add cool dynamic phenomena
to your games!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

UNC Acknowledgements
• NVIDIA Developer Relations
• Sponsors:

– NVIDIA Corporation
– US National Institutes of Health
– US Office of Naval Research
– US Department of Energy ASCI program
– US National Science Foundation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

For More Information
• http://www.cs.unc.edu/~harrism/cml
• http://www.cs.unc.edu/~harrism/gpgpu
• http://developer.nvidia.com
• Email harrism@cs.unc.edu
• Email gjames@nvidia.com

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Selected References

• Chorin, A.J., Marsden, J.E. A Mathematical Introduction to Fluid Mechanics. 3rd ed. Springer. New York, 1993
• Fedkiw, R., Stam, J. and Jensen, H.W. Visual Simulation of Smoke. In Proceedings of SIGGRAPH 2001, ACM Press / ACM

SIGGRAPH. 2001.
• Harris, M., Coombe, G., Scheuermann, T., and Lastra, A. Physically-Based Visual Simulation on Graphics Hardware.. Proc.

2002 SIGGRAPH / Eurographics Workshop on Graphics Hardware 2002.
• Kaneko, K. (ed.), Theory and applications of coupled map lattices. Wiley, 1993.
• Nishimori, H. and Ouchi, N. Formation of Ripple Patterns and Dunes by Wind-Blown Sand. Physical Review Letters, 71 1.

197-200. 1993.
• Pearson, J.E. Complex Patterns in a Simple System. Science, 261. 189-192. 1993.
• Stam, J. Stable Fluids. In Proceedings of SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, 121-128. 1999.
• Turk, G. Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion. In Proceedings of SIGGRAPH 1991, ACM

Press / ACM SIGGRAPH, 289-298. 1991.
• Witkin, A. and Kass, M. Reaction-Diffusion Textures. In Proceedings of SIGGRAPH 1991, ACM Press / ACM SIGGRAPH,

299-308. 1991.
• Yanagita, T. Phenomenology of boiling: A coupled map lattice model. Chaos, 2 3. 343-350. 1992.
• Yanagita, T. and Kaneko, K. Coupled map lattice model for convection. Physics Letters A, 175. 415-420. 1993.
• Yanagita, T. and Kaneko, K. Modeling and Characterization of Cloud Dynamics. Physical Review Letters, 78 22. 4297-

4300. 1997

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

More References
• Gomez, M. Interactive Simulation of Water Surfaces. in Game Programming Gems. Charles River

Media, 2000. p 187.
• Lengyel, E. Mathematics for 3D Game Programming & Computer Graphics. Charles River Media,

2002. Chapter 12, p 327.
• James, G. Operations for Hardware-Accelerated Procedural Texture Animation. in Game

Programming Gems II. Charles River Media, 2001. p 497.
• Strzodka, R. Virtual 16 Bit Precise Operations on RGBA8 Textures. Proceedings VMV 2002, 2002
• Strzodka, R., Rumpf, M. Using Graphics Cards for Quantized FEM Computations. In Proceedings

VIIP 2001, 2001.
• Demos -- NVIDIA Effects Browser

– http://developer.nvidia.com

