

EGX Platform for edge computing

Michael Lang - Solutions Architecture Manager APAC South September 2019

DEEP LEARNING APPLICATION DEVELOPMENT

ONE PLATFORM ACROSS ALL USE CASES

DESIGN

HPC Modeling & Simulation Design for Manufacturability

SUPPLY CHAIN

Forecasting & Inventory Management Supply Chain Optimization Robotics & Automation

MANUFACTURE

Robotics & Automation Inspection Predictive Maintenance Process Control

SERVICE

Predictive Maintenance Field Inspection Logistics Optimization Parts Inventory Management

NVIDIA EGX EDGE COMPUTING

NVIDIA EGX EDGE COMPUTING

A new class of distributed AI computing systems designed to gather and analyze continuous streams of data at the edge of the network.

Al computation is performed largely or completely on the EGX systems close to the data or user.

NVIDIA EGX is for applications that require:

Low-latency interactions Reduced bandwidth to the cloud Data privacy or sovereignty

.5 TOPS

520 TOPS

10,000 TOPS

COMPUTE & AI BY NVIDIA NETWORK, STORAGE, SECURITY BY MELLANOX

NVIDIA EGX EDGE COMPUTING - BREAKDOWN

NVIDIA EGX AI PLATFORM

Higher Performance Edge Computing Platform

- Powered by NVIDIA GPU
- Cloud-Native EGX Stack
- Vertical Industry SDKs
- Commercially off the shelf (COTS)
- Scale from 2W to 2 Petaflops

METROPOLIS EGX OPEN AI RETAIL PLATFORM

NVIDIA GPU CLOUD

Cloud repository of GPU enabled containers and frameworks NGC.NVIDIA.COM

SMALL, MEDIUM AND LARGE

JETSON AT THE EDGE

MICRO SERVERS

HEAVY LIFTING SERVERS

Jetson comes in a variety of sizes and carrier units for different use cases.

Small rack based servers that can support 1 - 4 Tesla T4 cards

Rack based 2RU servers that can support up to 7 x Telsa T4 cards for scale out sizing.

EGX HARDWARE DESIGN CONSIDERATIONS

EGX in the DC or at the Edge?	Sizing for Video streams	Sizing for Al models
Latency considerations High throughput & low latency One architecture scalable from device to cloud	How many streams? Resolution, 720P/2K/4K FPS What protocol(s)? H265/5?	How many models? How many FPS? How complex is the model
Scale up vs Scale out	MetaData Considerations	Maintenance and support
More smaller devices or fewer larger ones Power considerations Storage	Data vs Metadata Which one goes where Different platforms? Decentralised Data vs Centralized MD?	 Who will support it and how Remote updates & capability Support contracts through OEM or bespoke? Consumer vs Commercial HW

THE JETSON FAMILY

for AI at the Edge and Autonomous System designs

JETSON NANO 0.5 TFLOPS (FP16) JETSON TX2 series 1.3 TFLOPS (FP16)

JETSON Xavier NX 6 TFLOPS (FP16) 21 TOPS (INT8) JETSON AGX XAVIER series 11 TFLOPS (FP16) 32 TOPS (INT8)

5 - 10W 45mm x 70mm

7.5 - 15W* 50mm x 87mm

10 - 15W 45mm x 70mm

10 - 30W 100mm x 87mm

Fully autonomous machines

Al at the edge

Same software

Listed prices are for 1000u+ | Full specs at developer.nvidia.com/jetson

	JETSON NANO	JETSON TX2	JETSON XAVIER NX	JETSON AGX XAVIER
GPU	128 Core Maxwell 0.5 TFLOPs (FP16)	256 Core Pascal 1.3 TFLOPS (FP16)	384 Core Volta 21 TOPs (INT8)	512 Core Volta + NVDLA 10 TFLOPS (FP16) 32 TOPS (INT8)
CPU	4 core ARM A57	6 core Denver and A57 (2x) 2MB L2	6 core Carmel ARM CPU (3x) 2MB L2 + 4MB L3	8 core Carmel ARM CPU (4x) 2MB L2 + 4MB L3
Memory	4 GB 64-bit LPDDR4 25.6 GB/s	Up to 8 GB 128b LPDDR4 58 GB/s	8 GB 128-bit LPDDR4x 51.2 GB/s	Up to 16GB 256-bit LPDDR4x 137 GB/s
Storage	16 GB eMMC	Up to 32 GB eMMC	16 GB eMMC	32 GB eMMC
Encode	4K @ 30 (H.265)	4K @ 60 (H.265)	2x 4K @ 30 (H.265)	4x 4K @ 60 (H.265)
Decode	4K @ 60 (H.265)	2x 4K @ 60 (H.265)	2x 4K @ 60 (H.265)	6x 4K @ 60 (H.265)
Camera	12 (3x4 or 4x2) MIPI CSI- 2 D-PHY 1.1 lanes (18 Gbps)	12 lanes MIPI CSI-2 D-PHY 1.2 (30 Gbps) C-PHY (41 Gbps)	12 lanes (3x4 or 6x2) MIPI CSI-2 D-PHY 1.2 (30 Gbps)	16 lanes MIPI CSI-2 8 lanes SLVS-EC D-PHY (40 Gbps) C-PHY (59 Gbps)
Mechanical	69.6mm x 45mm 260 pin edge connector	87mm x 50mm 400 pin connector	69.6mm x 45mm 260 pin edge connector	100mm x 87mm 699 pin connector
Software	JetPack SDK - Unified software release across all Jetson products			

CONTROLLING AIR TRAFFIC WITH AI

From autopilot systems to customer service to predicting weather, AI is transforming aviation. With Aimee—a GPU-powered framework for AI solutions from Searidge Technologies—Air Traffic Control no longer needs a direct sightline. Aimee analyzes video feeds from hundreds of cameras, enabling ATC to look past occlusions and "see" every runway, taxiway, tarmac, and gate without looking away from their workstations.

SUPERHUMAN INSPECTION ACCURACY

Delivering impeccable quality is a great opportunity for high precision manufacturers to differentiate but raises the bar for accurate detection of the smallest micron-scale product defects.

Foxconn Interconnect Technology Group (FIT) is deploying AI-powered inspection systems with NVIDIA HGX-1, Tesla V100/P4, and Jetson TX2, and has improved its CPU socket defect detection escape rate from 4.3% to 0.015% - 287x

<mark> NVIDIA</mark>.

ACCELERATING IVA FOR SMART CITIES

Intelligent video analysis (IVA) can safeguard citizens and property and is a key element of smart cities but analyzing data from millions of cameras in real-time requires deep learning and intensive computing power. SK Telecom uses NVIDIA GPUs to power T View, it's AI VSaaS (Video Surveillance as a Service) solution. With Tesla GPUs, SKT speeds training 5x, and with TensorRT to scale its inference engine, SKT achieves cost-efficiencies without sacrificing accuracy.

AI TOOL PREDICTS YOUR SOLAR POWER SYSTEM

....

Homeowners spend significant amounts of time researching solar panels to determine potential savings. And because every roof is different, designs must be customized.

SunPower uses deep learning and aerial imagery to design and visualize customized solar power systems. Its AI tool, Instant Design, uses NVIDIA V100 GPUs on GCP to deliver predictions in ~1 second. Homeowners create their own designs instantly – improving the buying experience and reducing barriers to going solar.

TRANSMISSION LINE FIELD INSPECTION Industrial Inspection Automation

Costly, hazard prone and slow manual inspection of industrial assets results in downtimes and safety hazards

Al Workbench:

- Multi-Sensor: RGB Optical, Laser, Infrared and Exogenous data, Fugitive emission, Ultra sound
- RTX: 3D Visualization
- EGX: Data Capture, Path Planning, Continuous learning and Inferencing
- DGX: Training and Continuous Learning

Detection: Corrosion levels, Damaged/missing parts, Encroaching Vegetation volumes

Outcomes: 25-50% reduction in inspection cost and 50% avoidance of asset downtime.*

* ssurce: Avitas systems, a ge-venture-partners-nvidia-enhance-ai-robotic-inspection

INDUSTRIAL AI PLATFORM

NVIDIA AI END-TO-END WORKFLOW

NVIDIA EGX METROPOLIS BENEFITS

NVIDIA is Industry's Most Advanced AI Computing Platform

Largest domain of AI models

High throughput & low latency

One architecture scalable from device to cloud

NVIDIA EGX is AI-Optimized Hyper-converged Infrastructure

Hardware and software optimized for Al, storage, networking & security

Easy development & deployment of Al at edge

Optimized AI models in NGC

NVIDIA is an Open Platform

Support for every platform – VMW, RH, NTNX, Azure, AWS, GCP

Rich 3rd party ISV ecosystem

Rich OEM and integrator ecosystem

NVIDIA is Pervasive AI Platform

Every cloud

Hybrid cloud

Edge to cloud

NVIDIA has Deep Al Expertise

End-to-end, from development to deployment, from tools to experts

NVIDIA Research

DLI to reskill talent

SA & DevTech to co-engineer

NVIDIA has Global Reach and Support

Expertise in large verticals -M&E, healthcare, retail, manufacturing, transportation, and more

BD, SA, DevRel, DevTech, Research in every region

MANUFACTURING RESOURCES

Industrial AI Content

NVIDIA Deep Learning Institute www.nvidia.com/en-us/deep-learning-ai/education

NGC www.nvidia.com/en-us/gpu-cloud

