Analysis-Driven Optimization (GTC 2010)

Paulius Micikevicius | NVIDIA

Performance Optimization Process

- Use appropriate performance metric for each kernel
 - For example, Gflops/s don't make sense for a bandwidth-bound kernel
- Determine what limits kernel performance
 - Memory throughput
 - Instruction throughput
 - Latency
 - Combination of the above
- Address the limiters in the order of importance
 - Determine how close to the HW limits the resource is being used
 - Analyze for possible inefficiencies
 - Apply optimizations
 - Often these will just fall out from how HW operates

Presentation Outline

- Identifying performance limiters
- Analyzing and optimizing :
 - Memory-bound kernels
 - Instruction (math) bound kernels
 - Kernels with poor latency hiding
 - Register spilling

• For each:

- Brief background
- How to analyze
- How to judge whether particular issue is problematic
- How to optimize
- Some cases studies based on "real-life" application kernels

• Most information is for Fermi GPUs

Notes on profiler

- Most counters are reported per Streaming Multiprocessor (SM)
 - Not entire GPU
- A single run can collect a few counters
 - Multiple runs are needed when profiling more counters
 - Done automatically by the Visual Profiler
 - Have to be done manually using command-line profiler
- Counter values may not be exactly the same for repeated runs
 - Threadblocks and warps are scheduled at run-time
 - So, "two counters being equal" usually means "two counters within a small delta"
- See the profiler documentation for more information

Identifying Performance Limiters

Limited by Bandwidth or Arithmetic?

- Perfect instructions:bytes ratio for Fermi C2050:
 - ~3.6 : 1 with ECC on
 - ~4.5 : 1 with ECC off
 - These assume fp32 instructions, throughput for other instructions varies
- Algorithmic analysis:
 - Rough estimate of arithmetic to bytes ratio
- Code likely uses more instructions and bytes than algorithm analysis suggests:
 - Instructions for loop control, pointer math, etc.
 - Address pattern may result in more memory fetches
 - Two ways to investigate:
 - Use the profiler (quick, but approximate)
 - Use source code modification (more accurate, more work intensive)

Analysis with Profiler

• Profiler counters:

- instructions_issued, instructions_executed
 - Both incremented by 1 per warp
 - "issued" includes replays, "executed" does not
- gld_request, gst_request
 - Incremented by 1 per warp for each load/store instruction
 - Instruction may be counted if it is "predicated out"
- l1_global_load_miss, l1_global_load_hit, global_store_transaction
 - Incremented by 1 per <u>L1 line</u> (line is 128B)
- uncached_global_load_transaction
 - Incremented by 1 per gropu of 1, 2, 3, or 4 transactions
- Compare:
 - 32 * instructions_issued /* 32 = warp size */
 - 128B * (global_store_transaction + l1_global_load_miss)

A Note on Counting Global Memory Accesses

- Load/store instruction count can be lower than the number of actual memory transactions
 - Address pattern, different word sizes
- Counting requests from L1 to the rest of the memory system makes the most sense
 - Caching-loads: count L1 misses
 - Non-caching loads and stores: derive from bus signals (coming soon)
 - L1 counters report the transactions (size can vary), so not always ideal
- Some shortcuts, assuming "coalesced" address patterns:
 - One 32-bit access instruction
 - One 64-bit access instruction
 - One 128-bit access instruction
- -> one 128-byte transaction per warp
- -> two 128-byte transactions per warp
- -> four 128-byte transactions per warp

Analysis with Modified Source Code

- Time memory-only and math-only versions of the kernel
 - Easier for codes that don't have data-dependent control-flow or addressing
 - Gives you good estimates for:
 - Time spent accessing memory
 - Time spent in executing instructions

Comparing the times for modified kernels

- Helps decide whether the kernel is mem or math bound
- Shows how well memory operations are overlapped with arithmetic
 - Compare the sum of mem-only and math-only times to full-kernel time

Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)

Good mem-math overlap: latency not a problem

(assuming instruction throughput is not low compared to HW theory)

Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)

mem math full

Math-bound

Good mem-math overlap: latency not a problem

(assuming instruction throughput is not low compared to HW theory)

mem math full

Balanced

Good mem-math overlap: latency not a problem

(assuming memory/instr throughput is not low compared to HW theory)

Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)

mem math full

Math-bound

Good mem-math overlap: latency not a problem

(assuming instruction throughput is not low compared to HW theory)

mem math full

Balanced

Good mem-math overlap: latency not a problem

(assuming memory/instr throughput is not low compared to HW theory)

mem math full

Memory and latency bound

Poor mem-math overlap: latency is a problem

Source Modification

• Memory-only:

- Remove as much arithmetic as possible
 - Without changing access pattern
 - Use the profiler to verify that load/store instruction count is the same

• Store-only:

- Also remove the loads
- Math-only:
 - Remove global memory accesses
 - Need to trick the compiler:
 - Compiler throws away all code that it detects as not contributing to stores
 - Put stores inside conditionals that always evaluate to false
 - Condition should depend on the value about to be stored (prevents other optimizations)
 - Condition should not be known to the compiler

Source Modification for Math-only

Source Modification and Occupancy

- Removing pieces of code is likely to affect register count
 - This could increase occupancy, skewing the results
 - See slide 27 to see how that could affect throughput
- Make sure to keep the same occupancy
 - Check the occupancy with profiler before modifications
 - After modifications, if necessary add shared memory to match the unmodified kernel's occupancy

```
kernel<<< grid, block, smem, ...>>>(...)
```

Case Study: Limiter Analysis

- 3DFD of the wave equation, fp32
- Time (ms):
 - Full-kernel: 35.39
 - Mem-only: 33.27
 - Math-only: 16.25
- Instructions issued:
 - Full-kernel: 18,194,139
 - Mem-only: 7,497,296
 - Math-only: 16,839,792
- Memory access transactions:
 - Full-kernel: 1,708,032
 - Mem-only: 1,708,032
 - Math-only: 0

- Analysis:
 - Instr:byte ratio = ~2.66
 - Good overlap between math and mem:
 - 2.12 ms of math-only time (13%) are not overlapped with mem
 - App memory throughput: 62 GB/s
 - HW theory is 114 GB/s, so we're off

Case Study: Limiter Analysis

0

- 3DFD of the wave equation, fp32
- Time (ms):
 - Full-kernel: 35.39
 - Mem-only: 33.27
 - Math-only: 16.25
- Instructions issued:
 - Full-kernel: 18,194,139
 - Mem-only: 7,497,296
 - Math-only: 16,839,792
- Memory access transactions:
 - Full-kernel: 1,708,032
 - Mem-only: 1,708,032
 - Math-only:

- Analysis:
 - Instr:byte ratio = ~2.66
 - Good overlap between math and mem:
 - 2.12 ms of math-only time (13%) are not overlapped with mem
 - App memory throughput: 62 GB/s
 - HW theory is 114 GB/s, so we're off
- Conclusion:
 - Code is memory-bound
 - Latency could be an issue too
 - Optimizations should focus on memory throughput first
 - math contributes very little to total time (2.12 out of 35.39ms)

Summary: Limiter Analysis

- Rough algorithmic analysis:
 - How many bytes needed, how many instructions
- Profiler analysis:
 - Instruction count, memory request/transaction count
- Analysis with source modification:
 - Memory-only version of the kernel
 - Math-only version of the kernel
 - Examine how these times relate and overlap

Optimizations for Global Memory

Background: Fermi Memory Hierarchy

Background: Programming for L1 and L2

Short answer: DON'T

- GPU caches are not intended for the same use as CPU caches
 - Smaller size (especially per thread), so not aimed at temporal reuse
 - Intended to smooth out some access patterns, help with spilled registers, etc.
- Don't try to block for L1/L2 like you would on CPU
 - You have 100s to 1,000s of run-time scheduled threads hitting the caches
 - If it is possible to block for L1 then block for SMEM
 - Same size, same bandwidth, hw will not evict behind your back

• Optimize as if no caches were there

- No Fermi-only techniques to learn per se (so, all you know is still good)
- Some cases will just run faster

Background: Load Caching and L1 Size

Two types of loads

- Caching
 - compiler default (option: -Xptxas –dlcm=ca)
 - Attempt to hit in L1
 - Memory transaction is a 128-byte line
- Non-caching
 - compiler option: -Xptxas –dlcm=cg
 - Do not attempt to hit in L1 (invalidate the line if it's there)
 - Memory transaction is a 32-byte segment
- Choosing L1 / SMEM size
 - 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem
 - CUDA call, can be set for the app or per-kernel

Background: Load Caching and L1 Size

- Non-caching loads can improve perf when:
 - Loading scattered words or only part of a warp issues a load
 - Benefit: transaction is smaller, so useful payload is a larger percentage
 - Loading halos, for example
 - Spilling registers (reduce line fighting with spillage)
- Large L1 can improve perf when:
 - Spilling registers (more lines so fewer evictions)
 - Some misaligned, strided access patterns
- How to use:
 - Just try a 2x2 experiment matrix: {CA,CG} x {48-L1, 16-L1}
 - Keep the best combination same as you would with any HW managed cache, including CPUs

Memory Throughput Analysis

- Throughput: from application point of view
 - From app point of view: count bytes requested by the application
 - From HW point of view: count bytes moved by the hardware
 - The two can be different
 - Scattered/misaligned pattern: not all transaction bytes are utilized
 - Broadcast: the same small transaction serves many requests
- Two aspects to analyze for performance impact:
 - Addressing pattern
 - Number of concurrent accesses in flight

Memory Throughput Analysis

- Determining that access pattern is problematic:
 - Profiler counters: access instruction count is <u>significantly</u> smaller than transaction count
 - gld_request < (l1_global_load_miss + l1_global_load_hit) * (word_size / 4B)
 - gst_request < global_store_transaction * (word_size / 4B)
 - Make sure to adjust the transaction counters for word size (see slide 8)
 - App throughput is much smaller than HW throughput
 - Use profiler to get HW throughput
- Determining that the number of concurrent accesses is insufficient:
 - Throughput from HW point of view is much lower than theoretical

Concurrent Accesses and Performance

Increment a 64M element array

- Two accesses per thread (load then store, but they are dependent)
 - Thus, each warp (32 threads) has one outstanding transaction at a time
- Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller accesses have the same effect as one larger one.

For example:

Four 32-bit ~= one 128-bit

Optimization: Address Pattern

Coalesce the address pattern

- 128-byte lines for caching loads
- 32-byte segments for non-caching loads, stores
- A warp's address pattern is converted to transactions
 - Coalesce to maximize utilization of bus transactions
 - Refer to CUDA Programming Guide / Best Practices Guide / Fundamental Opt. talk

• Try using non-caching loads

- Smaller transactions (32B instead of 128B)
 - more efficient for scattered or partially-filled patterns
- Try fetching data from texture
 - Smaller transactions and different caching
 - Cache not polluted by other gmem loads

Optimizing Access Concurrency

- Have enough concurrent accesses to saturate the bus
 - Need (mem_latency)x(bandwidth) bytes in flight (Little's law)
 - Fermi C2050 global memory:
 - 400-800 cycle latency, 1.15 GHz clock, 144 GB/s bandwidth, 14 SMs
 - Need 30-50 128-byte transactions in flight per SM
- Ways to increase concurrent accesses:
 - Increase occupancy
 - Adjust threadblock dimensions
 - To maximize occupancy at given register and smem requirements
 - Reduce register count (-maxrregcount option, or __launch_bounds__)
 - Modify code to process several elements per thread

Case Study: Access Pattern 1

- Same 3DFD code as in the previous study
- Using caching loads (compiler default):
 - Memory throughput: 62 / 74 GB/s for app / hw
 - Different enough to be interesting
- Loads are coalesced:
 - gld_request == (l1_global_load_miss + l1_global_load_hit)
- There are halo loads that use only 4 threads out of 32
 - For these transactions only 16 bytes out of 128 are useful
- Solution: try non-caching loads (-Xptxas -dlcm=cg compiler option)
 - Memory throughput: 66 / 67 GB/s for app / hw
 - Performance increase of 7%
 - Not bad for just trying a compiler flag, no code change

Case Study: Accesses in Flight

• Continuing with the FD code

- Throughput from both app and hw point of view is 66-67 GB/s
- Now 30.84 out of 33.71 ms are due to mem
- 1024 concurrent threads per SM
 - Due to register count (24 per thread)
 - Simple copy kernel reaches ~80% of achievable mem throughput at this thread count

Solution: increase accesses per thread

- Modified code so that each thread is responsible for 2 output points
 - Doubles the load and store count per thread, saves some indexing math
 - Doubles the tile size -> reduces bandwidth spent on halos
- Further 25% increase in performance
 - App and HW throughputs are now 82 and 84 GB/s, respectively

Case Study: Access Pattern 2

- Kernel from climate simulation code
 - Mostly fp64 (so, at least 2 transactions per mem access)
- Profiler results:
 - gld_request: 72,704
 l1_global_load_hit: 439,072
 l1_global_load_missi
 724,402
 - l1_global_load_miss: 724,192
- Analysis:
 - L1 hit rate: 37.7%
 - 16 transactions per load instruction
 - Indicates bad access pattern (2 are expected due to 64-bit words)
 - Of the 16, 10 miss in L1 and contribute to mem bus traffic
 - So, we fetch **5x** more bytes than needed by the app

Case Study: Access Pattern 2

- Looking closer at the access pattern:
 - <u>Each thread</u> linearly traverses a contiguous memory region
 - Expecting for CPU-like L1 caching
 - Remember what I said about coding for L1 and L2
 - One of the worst access patterns for GPUs
- Solution:
 - Transposed the code so that <u>each warp</u> accesses a contiguous memory region
 - 2.17 transactions per load instruction
 - This and some other changes improved performance by 3x

Optimizing with Compression

- When all else has been optimized and kernel is limited by the number of bytes needed, consider compression
- Approaches:
 - Int: conversion between 8-, 16-, 32-bit integers is 1 instruction (64-bit requires a couple)
 - FP: conversion between fp16, fp32, fp64 is one instruction
 - fp16 (1s5e10m) is storage only, no math instructions
 - Range-based:
 - Lower and upper limits are kernel argumets
 - Data is an index for interpolation
- Application in practice:
 - Clark et al. "Solving Lattice QCD systems of equations using mixed precision solvers on GPUs"
 - <u>http://arxiv.org/abs/0911.3191</u>

Summary: Memory Analysis and Optimization

• Analyze:

- Access pattern:
 - Compare counts of access instructions and transactions
 - Compare throughput from app and hw point of view
- Number of accesses in flight
 - Look at occupancy and independent accesses per thread
 - Compare achieved throughput to theoretical throughput
 - Also to simple memcpy throughput at the same occupancy

• Optimizations:

- Coalesce address patterns per warp (nothing new here), consider texture
- Process more words per thread (if insufficient accesses in flight to saturate bus)
- Try the 4 combinations of L1 size and load type (caching and non-caching)
- Consider compression

Optimizations for Instruction Throughput

Possible Limiting Factors

• Raw instruction throughput

- Know the kernel instruction mix
- fp32, fp64, int, mem, transcendentals, etc. have different throughputs
 - Refer to the CUDA Programming Guide / Best Practices Guide
- Can examine assembly, if needed:
 - Can look at PTX (virtual assembly), though it's not the final optimized code
 - Can look at post-optimization machine assembly for GT200 (Fermi version coming later)

• Instruction serialization

- Occurs when threads in a warp issue the same instruction in sequence
 - As opposed to the entire warp issuing the instruction at once
 - Think of it as "replaying" the same instruction for different threads in a warp
- Some causes:
 - Shared memory bank conflicts
 - Control flow divergence within warps

Instruction Throughput: Analysis

- Profiler counters (both incremented by 1 per warp):
 - instructions executed: counts instructions encoutered during execution
 - instructions issued: also includes additional issues due to serialization
 - Difference between the two: issues that happened due to serialization, instr cache misses, etc.
 - Will rarely be 0, cause for concern only if it's a significant percentage of instructions issued
- Compare achieved throughput to HW capabilities
 - Peak instruction throughput is documented in the Programming Guide
 - Profiler also reports throughput:
 - GT200: as a fraction of theoretical peak for fp32 instructions
 - Fermi: as IPC (instructions per clock)

Instruction Throughput: Optimization

- Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)
 - Available for a number of math.h functions
 - 2-3 bits lower precision, much higher throughput
 - Refer to the CUDA Programming Guide for details
 - Often a single instruction, whereas a non-intrinsic is a SW sequence

• Additional compiler flags that also help (select GT200-level precision):

- -ftz=true
 : flush denormals to 0
- prec-div=false
 : faster fp division instruction sequence (some precision loss)
- prec-sqrt=false
 : faster fp sqrt instruction sequence (some precision loss)
- Make sure you do fp64 arithmetic only where you mean it:
 - fp64 throughput is lower than fp32
 - fp literals without an "f" suffix (34.7) are interpreted as fp64 per C standard

Serialization: Profiler Analysis

- Serialization is significant if
 - instructions_issued is significantly higher than instructions_executed
- Warp divergence
 - Profiler counters: divergent_branch, branch
 - Compare the two to see what percentage diverges
 - However, this only counts the branches, not the rest of serialized instructions

• SMEM bank conflicts

- Profiler counters:
 - l1_shared_bank_conflict: incremented by 1 per warp for each replay
 - double counts for 64-bit accesses
 - shared_load, shared_store: incremented by 1 per warp per instruction
- Bank conflicts are significant if both are true:
 - I1_shared_bank_conflict is significant compared to (shared_load+shared_store)
 - l1_shared_bank_conflict is significant compared to instructions_issued

Serialization: Analysis with Modified Code

- Modify kernel code to assess performance improvement if serialization were removed
 - Helps decide whether optimizations are worth pursuing
- Shared memory bank conflicts:
 - Change indexing to be either broadcasts or just threadIdx.x
 - Should also declare smem variables as volatile
 - Prevents compiler from "caching" values in registers
- Warp divergence:
 - change the condition to always take the same path
 - Time both paths to see what each costs

Serialization: Optimization

Shared memory bank conflicts:

- Pad SMEM arrays
 - For example, when a warp accesses a 2D array's column
 - See CUDA Best Practices Guide, Transpose SDK whitepaper
- Rearrange data in SMEM

• Warp serialization:

- Try grouping threads that take the same path
 - Rearrange the data, pre-process the data
 - Rearrange how threads index data (may affect memory perf)

Case Study: SMEM Bank Conflicts

- A different climate simulation code kernel, fp64
- Profiler values:
 - Instructions:
 - Executed / issued: 2,406,426 / 2,756,140
 - Difference: 349,714 (12.7% of instructions issued were "replays")
 - GMEM:
 - Total load and store transactions: 170,263
 - Instr:byte ratio: 4
 - suggests that instructions are a bigger limiter (especially since there is a lot of fp64 math)
 - SMEM:
 - Load / store: 421,785 / 95,172
 - Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)
 - This means a total of 854,385 SMEM access instructions, 39% replays

• Solution:

- Pad shared memory array: performance increased by 15%
 - replayed instructions reduced down to 1%

Instruction Throughput: Summary

• Analyze:

- Check achieved instruction throughput
- Compare to HW peak (but must take instruction mix into consideration)
- Check percentage of instructions due to serialization

Optimizations:

- Intrinsics, compiler options for expensive operations
- Group threads that are likely to follow same execution path
- Avoid SMEM bank conflicts (pad, rearrange data)

Optimizations for Latency

Latency: Analysis

- Suspect if:
 - Neither memory nor instruction throughput rates are close to HW theoretical rates
 - Poor overlap between mem and math
 - Full-kernel time is significantly larger than max{mem-only, math-only}

• Two possible causes:

- Insufficient concurrent threads per multiprocessor to hide latency
 - Occupancy too low
 - Too few threads in kernel launch to load the GPU
 - elapsed time doesn't change if problem size is increased (and with it the number of blocks/threads)
- Too few concurrent threadblocks per SM when using <u>___syncthreads()</u>
 - ______syncthreads() can prevent overlap between math and mem within the same threadblock

Simplified View of Latency and Syncs

Memory-only time Math-only time Kernel where most math cannot be executed until all data is loaded by the threadblock

Full-kernel time, one large threadblock per SM

Simplified View of Latency and Syncs

Latency: Optimization

• Insufficient threads or workload:

- Increase the level of parallelism (more threads)
- If occupancy is already high but latency is not being hidden:
 - Process several output elements per thread gives more independent memory and arithmetic instructions (which get pipelined)

• Barriers:

- Can assess impact on perf by commenting out ____syncthreads()
 - Incorrect result, but gives upper bound on improvement
- Try running several smaller threadblocks
 - Think of it as "pipelining" blocks
 - In some cases that costs extra bandwidth due to halos

• Check out Vasily Volkov's talk 2238 at GTC 2010 for a detailed treatment:

- "Better Performance at Lower Latency"

Register Spilling

Register Spilling

- Compiler "spills" registers to local memory when register limit is exceeded
 - HW limit is 63 registers per thread
 - Spills also possible when register limit is programmer-specified
 - Common when trying to achieve certain occupancy with -maxregcount compiler flag or __launch_bounds__ in source
 - lmem is like gmem, except that writes are cached in L1
 - lmem load hit in L1 -> no bus traffic
 - Imem load miss in L1 -> bus traffic (128 bytes per miss)
 - Compiler flag -Xptxas -v gives the register and lmem usage per thread

Potential impact on performance

- Additional bandwidth pressure if evicted from L1
- Additional instructions
- Not always a problem, easy to investigate with quick profiler analysis

Register Spilling: Analysis

- **Profiler counters:** <a>[1]_local_load_hit, <a>[1]_local_load_miss
- Impact on instruction count:
 - Compare to total instructions issued
- Impact on memory throughput:
 - Misses add 128 bytes per warp
 - Compare 2*l1_local_load_miss count to gmem access count (stores + loads)
 - Multiply lmem load misses by 2: missed line must have been evicted -> store across bus
 - Comparing with caching loads: count only gmem misses in L1
 - Comparing with non-caching loads: count all loads

Optimization for Register Spilling

- Try increasing the limit of registers per thread
 - Use a higher limit in <u>maxregcount</u>, or lower thread count for <u>launch_bounds</u>
 - Will likely decrease occupancy, potentially making gmem accesses less efficient
 - However, may still be an overall win fewer total bytes being accessed in gmem
- Non-caching loads for gmem
 - potentially fewer contentions with spilled registers in L1
- Increase L1 size to 48KB
 - default is 16KB L1, 48KB smem

Register Spilling: Case Study

- FD kernel, (3D-cross stencil)
 - fp32, so all gmem accesses are 4-byte words
 - Need higher occupancy to saturate memory bandwidth
 - Coalesced, non-caching loads
 - one gmem request = 128 bytes
 - all gmem loads result in bus traffic
 - Larger threadblocks mean lower gmem pressure
 - Halos (ghost cells) are smaller as a percentage
- Aiming to have 1024 concurrent threads per SM
 - Means no more than 32 registers per thread
 - Compiled with –maxrregcount=32

Case Study: Register Spilling 1

- 10th order in space kernel (31-point stencil)
 - 32 registers per thread : 68 bytes of lmem per thread : upto 1024 threads per SM

Profiled counters:

 – l1_local_load_miss 	= 36	inst_issued	= 8,308,582
 – l1_local_load_hit 	= 70,956	gld_request	= 595,200
 local_store 	= 64,800	gst_request	= 128,000

• Conclusion: spilling is not a problem in this case

- The ratio of gmem to lmem bus traffic is approx 8,444 : 1 (hardly any bus traffic is due to spills)
 - L1 contains most of the spills (99.9% hit rate for lmem loads)
- Only 1.6% of all instructions are due to spills

Case Study: Register Spilling 2

- 12th order in space kernel (37-point stencil)
 - 32 registers per thread : 80 bytes of lmem per thread : upto 1024 threads per SM

Profiled counters:

– l1_local_load_miss	= 376,889	inst_issued	= 10,154,216
 – l1_local_load_hit 	= 36,931	gld_request	= 550,656
 local_store 	= 71,176	gst_request	= 115,200

• Conclusion: spilling is a problem in this case

- The ratio of gmem to lmem bus traffic is approx 7:6 (53% of bus traffic is due to spilling)
 - L1 does not contain the spills (8.9% hit rate for lmem loads)
- Only 4.1% of all instructions are due to spills
- Solution: increase register limit per thread
 - 42 registers per thread : no spilling : upto 768 threads per SM
 - Single 512-thread block per SM : 13% perf increase
 - Three 256-thread blocks per SM : 37% perf decrease

Register Spilling: Summary

- Doesn't always decrease performance, but when it does it's due to:
 - Increased pressure on the memory bus
 - Increased instruction count

• Use the profiler to examine the impact by comparing:

- 2*I1_local_load_miss to all gmem accesses that don't hit in L1
- Local access count to total instructions issued
- Impact is significant if:
 - Memory-bound code: Imem misses are a significant percentage of total bus traffic for bandwidth-boun
 - Instruction-bound code: Imem accesses are a significant percentage of instructions

Summary

- Determining what limits your kernel most:
 - Arithmetic, memory bandwidth, latency
- Address the bottlenecks in the order of importance
 - Analyze for inefficient use of hardware
 - Estimate the impact on overall performance
 - Optimize to most efficiently use hardware
- More resources:
 - Fundamental Optimizations talk at GTC 2010
 - CUDA tutorials at Supercomputing
 - http://gpgpu.org/{sc2007,sc2008,sc2009}
 - CUDA Programming Guide, CUDA Best Practices Guide
 - CUDA webinars

Questions?