
© NVIDIA 2010

PauliusPaulius MicikeviciusMicikevicius| NVIDIA| NVIDIA

AnalysisAnalysis--Driven Optimization (GTC 2010)Driven Optimization (GTC 2010)

Performance Optimization Process

• Use appropriate performance metric for each kernel

– For example, Gflops/s don’t make sense for a bandwidth-bound kernel

• Determine what limits kernel performance

– Memory throughput

– Instruction throughput

© NVIDIA 2010

– Instruction throughput

– Latency

– Combination of the above

• Address the limiters in the order of importance

– Determine how close to the HW limits the resource is being used

– Analyze for possible inefficiencies

– Apply optimizations

• Often these will just fall out from how HW operates

2

Presentation Outline

• Identifying performance limiters

• Analyzing and optimizing :

– Memory-bound kernels

– Instruction (math) bound kernels

– Kernels with poor latency hiding

– Register spilling

© NVIDIA 2010

– Register spilling

• For each:

– Brief background

– How to analyze

– How to judge whether particular issue is problematic

– How to optimize

– Some cases studies based on “real-life” application kernels

• Most information is for Fermi GPUs

3

Notes on profiler

• Most counters are reported per Streaming Multiprocessor (SM)

– Not entire GPU

• A single run can collect a few counters

– Multiple runs are needed when profiling more counters

• Done automatically by the Visual Profiler

© NVIDIA 2010

• Done automatically by the Visual Profiler

• Have to be done manually using command-line profiler

• Counter values may not be exactly the same for repeated runs

– Threadblocks and warps are scheduled at run-time

– So, “two counters being equal” usually means “two counters within a
small delta”

• See the profiler documentation for more information

4

© NVIDIA 2010

Identifying Performance Limiters

5

Limited by Bandwidth or Arithmetic?

• Perfect instructions:bytes ratio for Fermi C2050:

– ~3.6 : 1 with ECC on

– ~4.5 : 1 with ECC off

– These assume fp32 instructions, throughput for other instructions varies

• Algorithmic analysis:

© NVIDIA 2010

Algorithmic analysis:

– Rough estimate of arithmetic to bytes ratio

• Code likely uses more instructions and bytes than algorithm analysis
suggests:

– Instructions for loop control, pointer math, etc.

– Address pattern may result in more memory fetches

– Two ways to investigate:

• Use the profiler (quick, but approximate)

• Use source code modification (more accurate, more work intensive)

6

Analysis with Profiler

• Profiler counters:

– instructions_issued, instructions_executed

• Both incremented by 1 per warp

• “issued” includes replays, “executed” does not

– gld_request, gst_request

• Incremented by 1 per warp for each load/store instruction

© NVIDIA 2010

• Incremented by 1 per warp for each load/store instruction

• Instruction may be counted if it is “predicated out”

– l1_global_load_miss, l1_global_load_hit, global_store_transaction

• Incremented by 1 per L1 line (line is 128B)

– uncached_global_load_transaction

• Incremented by 1 per gropu of 1, 2, 3, or 4 transactions

• Compare:

– 32 * instructions_issued /* 32 = warp size */

– 128B * (global_store_transaction + l1_global_load_miss)
7

A Note on Counting Global Memory Accesses

• Load/store instruction count can be lower than the number of actual
memory transactions

– Address pattern, different word sizes

• Counting requests from L1 to the rest of the memory system makes the
most sense

© NVIDIA 2010

– Caching-loads: count L1 misses

– Non-caching loads and stores: derive from bus signals (coming soon)

• L1 counters report the transactions (size can vary), so not always ideal

• Some shortcuts, assuming “coalesced” address patterns:

– One 32-bit access instruction -> one 128-byte transaction per warp

– One 64-bit access instruction -> two 128-byte transactions per warp

– One 128-bit access instruction -> four 128-byte transactions per warp

8

Analysis with Modified Source Code

• Time memory-only and math-only versions of the kernel

– Easier for codes that don’t have data-dependent control-flow or
addressing

– Gives you good estimates for:

• Time spent accessing memory

© NVIDIA 2010

• Time spent accessing memory

• Time spent in executing instructions

• Comparing the times for modified kernels

– Helps decide whether the kernel is mem or math bound

– Shows how well memory operations are overlapped with arithmetic

• Compare the sum of mem-only and math-only times to full-kernel time

9

Some Example Scenarios

time

© NVIDIA 2010

mem math full

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low

compared to HW theory)

10

Some Example Scenarios

time

© NVIDIA 2010

mem math full mem math full

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low

compared to HW theory)

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low

compared to HW theory)

Some Example Scenarios

time

© NVIDIA 2010

mem math full mem math full mem math full

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low

compared to HW theory)

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low

compared to HW theory)

Balanced

Good mem-math
overlap: latency not a
problem

(assuming memory/instr
throughput is not low

compared to HW theory)

12

Some Example Scenarios

time

© NVIDIA 2010

mem math full mem math full mem math full mem math full

Memory and latency bound

Poor mem-math overlap:
latency is a problem

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low

compared to HW theory)

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low

compared to HW theory)

Balanced

Good mem-math
overlap: latency not a
problem

(assuming memory/instr
throughput is not low

compared to HW theory)

13

Source Modification

• Memory-only:

– Remove as much arithmetic as possible

• Without changing access pattern

• Use the profiler to verify that load/store instruction count is the same

• Store-only:

Also remove the loads

© NVIDIA 2010

– Also remove the loads

• Math-only:

– Remove global memory accesses

– Need to trick the compiler:

• Compiler throws away all code that it detects as not contributing to stores

• Put stores inside conditionals that always evaluate to false

– Condition should depend on the value about to be stored (prevents other optimizations)

– Condition should not be known to the compiler

14

Source Modification for Math-only

__global__ void fwd_3D(..., int flag)

{

...

© NVIDIA 2010

...

value = temp + coeff * vsq;

if(1 == value * flag)

g_output[out_idx] = value;

}

If you compare only the

flag, the compiler may

move the computation

into the conditional as

well

15

Source Modification and Occupancy

• Removing pieces of code is likely to affect
register count

– This could increase occupancy, skewing the results

– See slide 27 to see how that could affect throughput

© NVIDIA 2010

See slide 27 to see how that could affect throughput

• Make sure to keep the same occupancy
– Check the occupancy with profiler before modifications

– After modifications, if necessary add shared memory to
match the unmodified kernel’s occupancy

kernel<<< grid, block, smem, ...>>>(...)

16

Case Study: Limiter Analysis

• Analysis:

– Instr:byte ratio = ~2.66

– Good overlap between math and mem:

• 2.12 ms of math-only time (13%) are not
overlapped with mem

– App memory throughput: 62 GB/s

• 3DFD of the wave equation, fp32

• Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

• Instructions issued:

© NVIDIA 2010

– App memory throughput: 62 GB/s

• HW theory is 114 GB/s, so we’re off

• Conclusion:

– Code is memory-bound

– Latency could be an issue too

– Optimizations should focus on memory
throughput first

• math contributes very little to total time
(2.12 out of 35.39ms)

• Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

• Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only: 0

17

Case Study: Limiter Analysis

• Analysis:

– Instr:byte ratio = ~2.66

– Good overlap between math and mem:

• 2.12 ms of math-only time (13%) are not
overlapped with mem

– App memory throughput: 62 GB/s

• 3DFD of the wave equation, fp32

• Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

• Instructions issued:

© NVIDIA 2010

– App memory throughput: 62 GB/s

• HW theory is 114 GB/s, so we’re off

• Conclusion:

– Code is memory-bound

– Latency could be an issue too

– Optimizations should focus on memory
throughput first

• math contributes very little to total time
(2.12 out of 35.39ms)

• Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

• Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only: 0

18

Summary: Limiter Analysis

• Rough algorithmic analysis:

– How many bytes needed, how many instructions

• Profiler analysis:

– Instruction count, memory request/transaction count

© NVIDIA 2010

– Instruction count, memory request/transaction count

• Analysis with source modification:

– Memory-only version of the kernel

– Math-only version of the kernel

– Examine how these times relate and overlap

19

© NVIDIA 2010

Optimizations for Global Memory

20

Background: Fermi Memory Hierarchy

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

© NVIDIA 2010

L2

Global Memory

L1 SMEML1 SMEM L1 SMEM

21

Background: Programming for L1 and L2

• Short answer: DON’T

– GPU caches are not intended for the same use as CPU caches

• Smaller size (especially per thread), so not aimed at temporal reuse

• Intended to smooth out some access patterns, help with spilled registers, etc.

– Don’t try to block for L1/L2 like you would on CPU

© NVIDIA 2010

– Don’t try to block for L1/L2 like you would on CPU

• You have 100s to 1,000s of run-time scheduled threads hitting the caches

• If it is possible to block for L1 then block for SMEM

– Same size, same bandwidth, hw will not evict behind your back

• Optimize as if no caches were there

– No Fermi-only techniques to learn per se (so, all you know is still good)

– Some cases will just run faster

22

Background: Load Caching and L1 Size

• Two types of loads

– Caching

• compiler default (option: -Xptxas –dlcm=ca)

• Attempt to hit in L1

• Memory transaction is a 128-byte line

© NVIDIA 2010

– Non-caching

• compiler option: -Xptxas –dlcm=cg

• Do not attempt to hit in L1 (invalidate the line if it’s there)

• Memory transaction is a 32-byte segment

• Choosing L1 / SMEM size

– 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem

– CUDA call, can be set for the app or per-kernel

23

Background: Load Caching and L1 Size

• Non-caching loads can improve perf when:

– Loading scattered words or only part of a warp issues a load

• Benefit: transaction is smaller, so useful payload is a larger percentage

• Loading halos, for example

– Spilling registers (reduce line fighting with spillage)

© NVIDIA 2010

– Spilling registers (reduce line fighting with spillage)

• Large L1 can improve perf when:

– Spilling registers (more lines so fewer evictions)

– Some misaligned, strided access patterns

• How to use:

– Just try a 2x2 experiment matrix: {CA,CG} x {48-L1, 16-L1}

• Keep the best combination - same as you would with any HW managed cache,
including CPUs

24

Memory Throughput Analysis

• Throughput: from application point of view

– From app point of view: count bytes requested by the application

– From HW point of view: count bytes moved by the hardware

– The two can be different

• Scattered/misaligned pattern: not all transaction bytes are utilized

© NVIDIA 2010

• Scattered/misaligned pattern: not all transaction bytes are utilized

• Broadcast: the same small transaction serves many requests

• Two aspects to analyze for performance impact:

– Addressing pattern

– Number of concurrent accesses in flight

25

Memory Throughput Analysis

• Determining that access pattern is problematic:

– Profiler counters: access instruction count is significantly smaller than
transaction count

• gld_request < (l1_global_load_miss + l1_global_load_hit) * (word_size / 4B)

• gst_request < global_store_transaction * (word_size / 4B)

• Make sure to adjust the transaction counters for word size (see slide 8)

© NVIDIA 2010

• Make sure to adjust the transaction counters for word size (see slide 8)

– App throughput is much smaller than HW throughput

• Use profiler to get HW throughput

• Determining that the number of concurrent accesses is insufficient:

– Throughput from HW point of view is much lower than theoretical

26

Concurrent Accesses and Performance

• Increment a 64M element array

– Two accesses per thread (load then store, but they are dependent)

• Thus, each warp (32 threads) has one outstanding transaction at a time

• Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

© NVIDIA 2010

Several independent smaller
accesses have the same effect
as one larger one.

For example:

Four 32-bit ~= one 128-bit

27

Optimization: Address Pattern

• Coalesce the address pattern

– 128-byte lines for caching loads

– 32-byte segments for non-caching loads, stores

– A warp’s address pattern is converted to transactions

• Coalesce to maximize utilization of bus transactions

© NVIDIA 2010

• Coalesce to maximize utilization of bus transactions

• Refer to CUDA Programming Guide / Best Practices Guide / Fundamental Opt. talk

• Try using non-caching loads

– Smaller transactions (32B instead of 128B)

• more efficient for scattered or partially-filled patterns

• Try fetching data from texture

– Smaller transactions and different caching

– Cache not polluted by other gmem loads

28

Optimizing Access Concurrency

• Have enough concurrent accesses to saturate the bus

– Need (mem_latency)x(bandwidth) bytes in flight (Little’s law)

– Fermi C2050 global memory:

• 400-800 cycle latency, 1.15 GHz clock, 144 GB/s bandwidth, 14 SMs

• Need 30-50 128-byte transactions in flight per SM

© NVIDIA 2010

• Need 30-50 128-byte transactions in flight per SM

• Ways to increase concurrent accesses:

– Increase occupancy

• Adjust threadblock dimensions

– To maximize occupancy at given register and smem requirements

• Reduce register count (-maxrregcount option, or __launch_bounds__)

– Modify code to process several elements per thread

29

Case Study: Access Pattern 1

• Same 3DFD code as in the previous study

• Using caching loads (compiler default):

– Memory throughput: 62 / 74 GB/s for app / hw

– Different enough to be interesting

• Loads are coalesced:

© NVIDIA 2010

• Loads are coalesced:

– gld_request == (l1_global_load_miss + l1_global_load_hit)

• There are halo loads that use only 4 threads out of 32

– For these transactions only 16 bytes out of 128 are useful

• Solution: try non-caching loads (-Xptxas –dlcm=cg compiler option)

– Memory throughput: 66 / 67 GB/s for app / hw

– Performance increase of 7%

• Not bad for just trying a compiler flag, no code change

30

Case Study: Accesses in Flight

• Continuing with the FD code

– Throughput from both app and hw point of view is 66-67 GB/s

– Now 30.84 out of 33.71 ms are due to mem

– 1024 concurrent threads per SM

• Due to register count (24 per thread)

© NVIDIA 2010

• Simple copy kernel reaches ~80% of achievable mem throughput at this thread count

• Solution: increase accesses per thread

– Modified code so that each thread is responsible for 2 output points

• Doubles the load and store count per thread, saves some indexing math

• Doubles the tile size -> reduces bandwidth spent on halos

– Further 25% increase in performance

• App and HW throughputs are now 82 and 84 GB/s, respectively

31

Case Study: Access Pattern 2

• Kernel from climate simulation code

– Mostly fp64 (so, at least 2 transactions per mem access)

• Profiler results:

– gld_request: 72,704

– l1_global_load_hit: 439,072

© NVIDIA 2010

– l1_global_load_hit: 439,072

– l1_global_load_miss: 724,192

• Analysis:

– L1 hit rate: 37.7%

– 16 transactions per load instruction

• Indicates bad access pattern (2 are expected due to 64-bit words)

• Of the 16, 10 miss in L1 and contribute to mem bus traffic

• So, we fetch 5x more bytes than needed by the app

32

Case Study: Access Pattern 2

• Looking closer at the access pattern:

– Each thread linearly traverses a contiguous memory region

– Expecting for CPU-like L1 caching

• Remember what I said about coding for L1 and L2

– One of the worst access patterns for GPUs

© NVIDIA 2010

– One of the worst access patterns for GPUs

• Solution:

– Transposed the code so that each warp accesses a contiguous
memory region

– 2.17 transactions per load instruction

– This and some other changes improved performance by 3x

33

Optimizing with Compression

• When all else has been optimized and kernel is limited by the number of
bytes needed, consider compression

• Approaches:

– Int: conversion between 8-, 16-, 32-bit integers is 1 instruction (64-bit requires a
couple)

– FP: conversion between fp16, fp32, fp64 is one instruction

© NVIDIA 2010

– FP: conversion between fp16, fp32, fp64 is one instruction

• fp16 (1s5e10m) is storage only, no math instructions

– Range-based:

• Lower and upper limits are kernel argumets

• Data is an index for interpolation

• Application in practice:

– Clark et al. “Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs”

– http://arxiv.org/abs/0911.3191
34

Summary: Memory Analysis and Optimization

• Analyze:

– Access pattern:

• Compare counts of access instructions and transactions

• Compare throughput from app and hw point of view

– Number of accesses in flight

• Look at occupancy and independent accesses per thread

© NVIDIA 2010

• Look at occupancy and independent accesses per thread

• Compare achieved throughput to theoretical throughput

– Also to simple memcpy throughput at the same occupancy

• Optimizations:

– Coalesce address patterns per warp (nothing new here), consider texture

– Process more words per thread (if insufficient accesses in flight to saturate bus)

– Try the 4 combinations of L1 size and load type (caching and non-caching)

– Consider compression

35

© NVIDIA 2010

Optimizations for Instruction Throughput

36

Possible Limiting Factors

• Raw instruction throughput

– Know the kernel instruction mix

– fp32, fp64, int, mem, transcendentals, etc. have different throughputs

• Refer to the CUDA Programming Guide / Best Practices Guide

– Can examine assembly, if needed:

• Can look at PTX (virtual assembly), though it’s not the final optimized code

© NVIDIA 2010

• Can look at PTX (virtual assembly), though it’s not the final optimized code

• Can look at post-optimization machine assembly for GT200 (Fermi version coming later)

• Instruction serialization

– Occurs when threads in a warp issue the same instruction in sequence

• As opposed to the entire warp issuing the instruction at once

• Think of it as “replaying” the same instruction for different threads in a warp

– Some causes:

• Shared memory bank conflicts

• Control flow divergence within warps

37

Instruction Throughput: Analysis

• Profiler counters (both incremented by 1 per warp):

– instructions executed: counts instructions encoutered during execution

– instructions issued: also includes additional issues due to serialization

– Difference between the two: issues that happened due to serialization,
instr cache misses, etc.

© NVIDIA 2010

• Will rarely be 0, cause for concern only if it’s a significant percentage of
instructions issued

• Compare achieved throughput to HW capabilities

– Peak instruction throughput is documented in the Programming Guide

– Profiler also reports throughput:

• GT200: as a fraction of theoretical peak for fp32 instructions

• Fermi: as IPC (instructions per clock)

38

Instruction Throughput: Optimization

• Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)

– Available for a number of math.h functions

– 2-3 bits lower precision, much higher throughput

• Refer to the CUDA Programming Guide for details

– Often a single instruction, whereas a non-intrinsic is a SW sequence

Additional compiler flags that also help (select GT200-level precision):

© NVIDIA 2010

• Additional compiler flags that also help (select GT200-level precision):

– -ftz=true : flush denormals to 0

– -prec-div=false : faster fp division instruction sequence (some precision loss)

– -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)

• Make sure you do fp64 arithmetic only where you mean it:

– fp64 throughput is lower than fp32

– fp literals without an “f” suffix (34.7) are interpreted as fp64 per C standard

39

Serialization: Profiler Analysis

• Serialization is significant if

– instructions_issued is significantly higher than instructions_executed

• Warp divergence

– Profiler counters: divergent_branch, branch

– Compare the two to see what percentage diverges

• However, this only counts the branches, not the rest of serialized instructions

© NVIDIA 2010

• However, this only counts the branches, not the rest of serialized instructions

• SMEM bank conflicts

– Profiler counters:

• l1_shared_bank_conflict: incremented by 1 per warp for each replay

– double counts for 64-bit accesses

• shared_load, shared_store: incremented by 1 per warp per instruction

– Bank conflicts are significant if both are true:

• l1_shared_bank_conflict is significant compared to (shared_load+shared_store)

• l1_shared_bank_conflict is significant compared to instructions_issued

40

Serialization: Analysis with Modified Code

• Modify kernel code to assess performance improvement
if serialization were removed

– Helps decide whether optimizations are worth pursuing

• Shared memory bank conflicts:
– Change indexing to be either broadcasts or just threadIdx.x

© NVIDIA 2010

– Change indexing to be either broadcasts or just threadIdx.x

– Should also declare smem variables as volatile

• Prevents compiler from “caching” values in registers

• Warp divergence:

– change the condition to always take the same path

– Time both paths to see what each costs

41

Serialization: Optimization

• Shared memory bank conflicts:
– Pad SMEM arrays

• For example, when a warp accesses a 2D array’s column

• See CUDA Best Practices Guide, Transpose SDK whitepaper

© NVIDIA 2010

– Rearrange data in SMEM

• Warp serialization:
– Try grouping threads that take the same path

• Rearrange the data, pre-process the data

• Rearrange how threads index data (may affect memory perf)

42

Case Study: SMEM Bank Conflicts

• A different climate simulation code kernel, fp64

• Profiler values:

– Instructions:

• Executed / issued: 2,406,426 / 2,756,140

• Difference: 349,714 (12.7% of instructions issued were “replays”)

– GMEM:

• Total load and store transactions: 170,263

© NVIDIA 2010

• Instr:byte ratio: 4

– suggests that instructions are a bigger limiter (especially since there is a lot of fp64 math)

– SMEM:

• Load / store: 421,785 / 95,172

• Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)

– This means a total of 854,385 SMEM access instructions, 39% replays

• Solution:

– Pad shared memory array: performance increased by 15%

• replayed instructions reduced down to 1%

43

Instruction Throughput: Summary

• Analyze:

– Check achieved instruction throughput

– Compare to HW peak (but must take instruction mix into
consideration)

© NVIDIA 2010

– Check percentage of instructions due to serialization

• Optimizations:

– Intrinsics, compiler options for expensive operations

– Group threads that are likely to follow same execution path

– Avoid SMEM bank conflicts (pad, rearrange data)

44

© NVIDIA 2010

Optimizations for Latency

45

Latency: Analysis

• Suspect if:

– Neither memory nor instruction throughput rates are close to HW theoretical
rates

– Poor overlap between mem and math

• Full-kernel time is significantly larger than max{mem-only, math-only}

© NVIDIA 2010

• Two possible causes:

– Insufficient concurrent threads per multiprocessor to hide latency

• Occupancy too low

• Too few threads in kernel launch to load the GPU

– elapsed time doesn’t change if problem size is increased (and with it the number of blocks/threads)

– Too few concurrent threadblocks per SM when using __syncthreads()

• __syncthreads() can prevent overlap between math and mem within the same threadblock

46

Simplified View of Latency and Syncs

Math-only time

Memory-only time

Kernel where most math cannot be
executed until all data is loaded by
the threadblock

© NVIDIA 2010

47

Full-kernel time, one large threadblock per SM

time

Simplified View of Latency and Syncs

Math-only time

Memory-only time

Kernel where most math cannot be
executed until all data is loaded by
the threadblock

© NVIDIA 2010

48

Full-kernel time, two threadblocks per SM
(each half the size of one large one)

Full-kernel time, one large threadblock per SM

time

Latency: Optimization

• Insufficient threads or workload:

– Increase the level of parallelism (more threads)

– If occupancy is already high but latency is not being hidden:

• Process several output elements per thread – gives more independent memory and arithmetic instructions
(which get pipelined)

• Barriers:

© NVIDIA 2010

– Can assess impact on perf by commenting out __syncthreads()

• Incorrect result, but gives upper bound on improvement

– Try running several smaller threadblocks

• Think of it as “pipelining” blocks

• In some cases that costs extra bandwidth due to halos

• Check out Vasily Volkov’s talk 2238 at GTC 2010 for a detailed treatment:

– “Better Performance at Lower Latency”

49

© NVIDIA 2010

Register Spilling

50

Register Spilling

• Compiler “spills” registers to local memory when register limit is exceeded

– HW limit is 63 registers per thread

– Spills also possible when register limit is programmer-specified

• Common when trying to achieve certain occupancy with -maxrregcount compiler flag or
__launch_bounds__ in source

– lmem is like gmem, except that writes are cached in L1

© NVIDIA 2010

– lmem is like gmem, except that writes are cached in L1

• lmem load hit in L1 -> no bus traffic

• lmem load miss in L1 -> bus traffic (128 bytes per miss)

– Compiler flag –Xptxas –v gives the register and lmem usage per thread

• Potential impact on performance

– Additional bandwidth pressure if evicted from L1

– Additional instructions

– Not always a problem, easy to investigate with quick profiler analysis

51

Register Spilling: Analysis

• Profiler counters: l1_local_load_hit, l1_local_load_miss

• Impact on instruction count:

– Compare to total instructions issued

• Impact on memory throughput:

© NVIDIA 2010

• Impact on memory throughput:

– Misses add 128 bytes per warp

– Compare 2*l1_local_load_miss count to gmem access count
(stores + loads)

• Multiply lmem load misses by 2: missed line must have been evicted ->
store across bus

• Comparing with caching loads: count only gmem misses in L1

• Comparing with non-caching loads: count all loads
52

Optimization for Register Spilling

• Try increasing the limit of registers per thread

– Use a higher limit in –maxrregcount, or lower thread count for
__launch_bounds__

– Will likely decrease occupancy, potentially making gmem accesses less
efficient

– However, may still be an overall win – fewer total bytes being accessed in

© NVIDIA 2010

– However, may still be an overall win – fewer total bytes being accessed in
gmem

• Non-caching loads for gmem

– potentially fewer contentions with spilled registers in L1

• Increase L1 size to 48KB

– default is 16KB L1, 48KB smem

53

Register Spilling: Case Study

• FD kernel, (3D-cross stencil)

– fp32, so all gmem accesses are 4-byte words

• Need higher occupancy to saturate memory bandwidth

– Coalesced, non-caching loads

• one gmem request = 128 bytes

© NVIDIA 2010

• one gmem request = 128 bytes

• all gmem loads result in bus traffic

– Larger threadblocks mean lower gmem pressure

• Halos (ghost cells) are smaller as a percentage

• Aiming to have 1024 concurrent threads per SM

– Means no more than 32 registers per thread

– Compiled with –maxrregcount=32

54

Case Study: Register Spilling 1

• 10th order in space kernel (31-point stencil)

– 32 registers per thread : 68 bytes of lmem per thread : upto 1024 threads per SM

• Profiled counters:

– l1_local_load_miss = 36 inst_issued = 8,308,582

– l1_local_load_hit = 70,956 gld_request = 595,200

– local_store = 64,800 gst_request = 128,000

© NVIDIA 2010

– local_store = 64,800 gst_request = 128,000

• Conclusion: spilling is not a problem in this case

– The ratio of gmem to lmem bus traffic is approx 8,444 : 1 (hardly any bus traffic is due to spills)

• L1 contains most of the spills (99.9% hit rate for lmem loads)

– Only 1.6% of all instructions are due to spills

• Comparison:

– 42 registers per thread : no spilling : upto 768 threads per SM

• Single 512-thread block per SM : 24% perf decrease

• Three 256-thread blocks per SM : 7% perf decrease

55

Case Study: Register Spilling 2

• 12th order in space kernel (37-point stencil)

– 32 registers per thread : 80 bytes of lmem per thread : upto 1024 threads per SM

• Profiled counters:

– l1_local_load_miss = 376,889 inst_issued = 10,154,216

– l1_local_load_hit = 36,931 gld_request = 550,656

– local_store = 71,176 gst_request = 115,200

© NVIDIA 2010

– local_store = 71,176 gst_request = 115,200

• Conclusion: spilling is a problem in this case

– The ratio of gmem to lmem bus traffic is approx 7 : 6 (53% of bus traffic is due to spilling)

• L1 does not contain the spills (8.9% hit rate for lmem loads)

– Only 4.1% of all instructions are due to spills

• Solution: increase register limit per thread

– 42 registers per thread : no spilling : upto 768 threads per SM

– Single 512-thread block per SM : 13% perf increase

– Three 256-thread blocks per SM : 37% perf decrease

56

Register Spilling: Summary

• Doesn’t always decrease performance, but when it does it’s
due to:

– Increased pressure on the memory bus

– Increased instruction count

• Use the profiler to examine the impact by comparing:

© NVIDIA 2010

• Use the profiler to examine the impact by comparing:

– 2*l1_local_load_miss to all gmem accesses that don’t hit in L1

– Local access count to total instructions issued

• Impact is significant if:

– Memory-bound code: lmem misses are a significant percentage of
total bus traffic for bandwidth-boun

– Instruction-bound code: lmem accesses are a significant
percentage of instructions

57

Summary

• Determining what limits your kernel most:

– Arithmetic, memory bandwidth, latency

• Address the bottlenecks in the order of importance

– Analyze for inefficient use of hardware

– Estimate the impact on overall performance

© NVIDIA 2010

– Estimate the impact on overall performance

– Optimize to most efficiently use hardware

• More resources:

– Fundamental Optimizations talk at GTC 2010

– CUDA tutorials at Supercomputing

• http://gpgpu.org/{sc2007,sc2008,sc2009}

– CUDA Programming Guide, CUDA Best Practices Guide

– CUDA webinars

58

Questions?

© NVIDIA 2010

59

