
Eric Young – NVIDIA Corporation
San Jose, CA | September 20th, 2010

DirectCompute

Optimizations and Best Practices

Contents

 Introduction

 Best Practices for GPU Optimization

 Parallel Reduction Optimization Example

Why GPUs?

• GPUs are throughput oriented processors

– GPUs a lot of parallel processing units (FLOPs)

– Memory latencies are covered with more workload

• Problems with a lot of work can achieve good speedups

• Must provide enough work to GPUs for efficiency and

performance

• DirectCompute is an API allowing Compute Shaders on the

GPU hardware efficiently

What Is DirectCompute?

Microsoft’s standard GPU-

Computing platform

For Windows Vista and Windows 7

On DX10 and DX11 hardware

generations

Another realization of the

CUDA architecture

Sibling API to OpenCL and CUDA C

Shares many concepts, idioms,

algorithms and optimizations

Application

Direct

Compute

Advantages of DirectCompute

• DirectCompute allows general purpose computation on

CUDA GPUs via Compute Shaders

• DirectCompute:

– Interoperates with Direct3D resources

– Includes all texture features (cube maps, mip-maps)

– Similar to HLSL (DirectX Shaders)

– Single API across all GPU vendors, on Windows

– Some guarantees of identical results across different hardware

GPU Programming Model

DirectCompute programs decompose parallel work into

groups of threads, and dispatch many thread groups to

solve a problem.

numThreads(nX, nY, nZ)

Dispatch: 3D grid of thread

groups. Hundreds of

thousands of threads.

Thread Group: 3D grid of

threads. Tens or hundreds

of threads.

Thread: One invocation of

a shader.

SV_DispatchThreadID,

SV_GroupThreadID,

SV_GroupID

Parallel Execution Model

Thread Group 0

Shared Memory

Thread Group 1

Shared Memory

Thread Group N-1

Shared Memory

…

Threads in the same group run concurrently

Threads in different groups may run concurrently

DirectCompute
Best Practices for GPU Optimizations

9

Memory Coalescing

• A coordinated read by a half-warp (16 threads)

• A contiguous region of global memory:

– 64 bytes - each thread reads a word: int, float, …

– 128 bytes - each thread reads a double-word: int2, float2, …

– 256 bytes – each thread reads a quad-word: int4, float4, …

• Additional restrictions:

– Starting address for a region must be a multiple of region size

– The kth thread in a half-warp must access the kth element in a block

• Exception: not all threads must be participating

– Predicated access, divergence within a half warp

Coalesced Access:
Reading floats

t0 t1 t2 t14 t15t3

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

132 136 184 192128 140 144 188

Some Threads Do Not Participate

All threads participate

11

Uncoalesced Access:
Reading floats

t0 t1 t2 t14 t15t3

132 136128 140 144

Permuted Access by Threads

184 192188

Misaligned Starting Address (not a multiple of 64)

t0 t1 t2 t13 t15t3

132 136 184 192128 140 144 188

t14

Coalescing (Compute 1.2+ GPUs)

• Much improved coalescing capabilities in 10-series architecture

• Hardware combines addresses within a half-warp into one or more

aligned segments

– 32, 64, or 128 bytes

• All threads with addresses within a segment are serviced with a single

memory transaction

– Regardless of ordering or alignment within the segment

Compute 1.2+ Coalesced Access:
Reading floats

t0 t1 t2 t14 t15t3

132 136128 140 144

Permuted access by threads

184 192188

Misaligned starting address (not a multiple of 64)

t0 t1 t2 t13 t15t3

132 136 184 192128 140 144 188

t14

Compute 1.2+ Coalesced Access:
Reading floats

Misaligned starting address (not a multiple of 64)

t0 t1 t2 t13 t15t3

120 124 168 176116 128 132 172

t14t4

32-byte segment 64-byte segment

Transaction size recursively reduced to minimize size

• Fast memory shared across threads within a group

– Not shared across thread groups!

– groupshared float2 MyArray[16][32];

– Not persistent between Dispatch() calls

• Used to reduce computation

– Use neighboring calculations by storing them in TGSM

– E.g. Post-processing texture instructions

Thread Group Shared Memory (TGSM)

TGSM Performance (contd.)

• Reduce access whenever possible

– E.g. Pack data into uint instead of float4

– But watch out for increased ALUs!

• Basically try to read/write once per TGSM address

– Copy to temp array can help if it can avoid duplicate accesses!

– Ensure that you perform a thread synchronization immediately after loading

your data to shared memory

• Unroll loops accessing shared mem

– Helps compiler hide latency

• No Bank Conflicts

– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Shared Memory Bank Addressing

• No Bank Conflicts
- Linear addressing stride == 1

• 2-way Bank Conflicts

– Linear addressing

stride == 2

• 8-way Bank Conflicts

– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

Shared Memory Bank Addressing

What is Occupancy?

 GPUs typically run 1000 to 10,000’s of threads concurrently.

 Higher occupancy = More efficient utilization of the HW.

 Parallel code executed in HW through warps (32 threads) running

concurrently at any given moment of time.

 Thread instructions are executed sequentially, by executing other

warps, we can hide instruction and memory latencies in the HW.

 Maximizing ―Occupancy‖, with occupancy of 1.0 the best scenario.

of resident warps

Max possible # of resident warps

Occupancy =

Maximizing HW Occupancy

• Example: HW shader unit:

– 8 thread groups max

– 48KB total shared memory

– 1536 threads max

• Shader launched with a thread group size of 256 threads and

uses 32KB of shared memory

• → Can only run 1 thread group per HW shader unit

• We are limited by shared memory.

 One or more thread groups resides on a single shader unit

 Occupancy limited by resource usage:

– Thread group size declaration

– Thread Group Shared Memory usage

– Number of registers used by thread group

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Maximizing HW Occupancy

• Registers used per thread affects occupancy:

– ―Register Pressure‖

– You have little control over this

– Rely on drivers to do the right thing 

• Experimentation and tuning needed to find the right balance

– Store different presets for best performance across a variety of GPUs

22

• # of thread groups > # of multiprocessors

– So all multiprocessors have at least one thread group to execute

• # of thread groups / # of multiprocessors > 2

– Multiple thread groups can run concurrently in a multiprocessor

– Thread groups that aren’t waiting at a barrier keep the hardware busy

– Subject to resource availability – registers, shared memory

• # of thread groups > 100 to scale to future devices

– Thread groups executed in pipeline fashion

– 1000 groups per dispatch will scale across multiple generations

• # threads / threadgroup a multiple of warp size

– All threads in a warp doing work

Dispatch/Thread Group Size Heuristics

DirectCompute Optimization Example
Parallel Reduction

Parallel Reduction

 Common and important data parallel primitive

— (e.g. find the sum of an array)

 Easy to implement in compute shaders

— Harder to get it right

 Serves as a great optimization example

— We’ll walk step by step through 7 different versions

— Demonstrates several important optimization strategies

Parallel Reduction

 Tree-based approach used within each thread block

 Need to be able to use multiple thread blocks

— To process very large arrays

— To keep all multiprocessors on the GPU busy

— Each thread block reduces a portion of the array

 But how do we communicate partial results between thread blocks?

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

Problem: Global Synchronization

 If we could synchronize across all thread groups we can run reduce on a very

large array

— A global sync after each group produces its result

— Once all groups reach sync, continue recursively

 But GPUs have no global synchronization. Why?

— Expensive to build in hardware for GPUs with high processor count

— Would force programmer to run fewer groups (no more than # multiprocessors * #

resident groups / multiprocessor) to avoid deadlock, which may reduce overall

efficiency

 Solution: decompose into multiple shader dispatches

— A dispatch() call serves as a global synchronization point

— Dispatch() has negligible HW overhead, low SW overhead

Solution: Shader Decomposition

 Avoid global sync by decomposing computation into

multiple dispatches

 In the case of reductions, code for all levels is the same

— Implement with recursive dispatches

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

What is Our Optimization Goal?

 We should strive to reach GPU peak performance

 Choose the right metric:

— GFLOP/s: for compute-bound shaders

— Bandwidth: for memory-bound shaders

 Reductions have very low arithmetic intensity

— 1 flop per element loaded (bandwidth-optimal)

 Therefore we should strive for peak bandwidth

 We use a G80 GPU for this Optimization

— 384-bit memory interface, 900 MHz DDR

— 384 * 1800 / 8 = 86.4 GB/s

— Optimization techniques are equally applicable to newer GPUs

Reduction #1: Interleaved Addressing

RWStructuredBuffer<float> g_data;
#define groupDim_x 128
groupshared float sdata[groupDim_x];
[numthreads(groupDim_x, 1, 1)]
void reduce1(uint3 threadIdx : SV_GroupThreadID,

uint3 groupIdx : SV_GroupID)
{

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = groupIdx.x*groupDim_x + threadIdx.x;
sdata[tid] = g_data[i];
GroupMemoryBarrierWithGroupSync();

// do reduction in shared mem
for(unsigned int s=1; s < groupDim_x; s *= 2) {

if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

}
GroupMemoryBarrierWithGroupSync();

}

// write result for this block to global mem
if (tid == 0) g_data[groupIdx.x] = sdata[0];

}

Parallel Reduction: Interleaved Addressing

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 2 4 6 8 10 12 14

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 4 8 12

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 8

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

Thread

IDs

Step 1

Stride 1

Step 2

Stride 2

Step 3

Stride 4

Step 4

Stride 8

Thread

IDs

Thread

IDs

Thread

IDs

Performance for 4M element reduction

Shader 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Note: Block Size = 128 threads for all tests

BandwidthTime (222 ints)

Reduction #1: Interleaved Addressing
…
void reduce1(uint3 threadIdx : SV_GroupIndex,

uint3 groupIdx : SV_GroupID)
{

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = groupIdx.x*groupDim_x + threadIdx.x;
sdata[tid] = g_idata[i];
GroupMemoryBarrierWithGroupSync();

// do reduction in shared mem
for(unsigned int s=1; s < groupDim_x; s *= 2) {

if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

}
GroupMemoryBarrierWithGroupSync();

}

// write result for this block to global mem
if (tid == 0) g_data[groupIdx.x] = sdata[0];

}

Problem: highly divergent branching

results in very poor performance!

What is Thread Divergence?

 Divergence is the main performance concern when branching

— Threads within a single warp take different paths

— Different execution paths must be serialized

 Avoid divergence when branch condition is a function of thread ID

— Example with divergence:

 Branch granularity < warp size

 if (threadIdx.x > 2) { }

— Example without divergence:

 Branch granularity is a whole multiple of warp size

 if (threadIdx.x / WARP_SIZE > 2) { }

for (unsigned int s=1; s < groupDim_x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

GroupMemoryBarrierWithGroupSync();

}

for (unsigned int s=1; s < groupDim_x; s *= 2) {

int index = 2 * s * tid;

if (index < groupDim_x) {

sdata[index] += sdata[index + s];

}

GroupMemoryBarrierWithGroupSync();

}

Reduction #2: Interleaved Addressing
Replace divergent branch in inner loop:

With strided index and non-divergent branch:

Branch taken

by threads [0,2,4,…]

Branch taken

by threads [0,1,2,…]

Parallel Reduction: Interleaved Addressing

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Shared Memory

0 1 2 3 4 5 6 7

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 1 2 3

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 1

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

Thread

IDs

Step 1

Stride 1

Step 2

Stride 2

Step 3

Stride 4

Step 4

Stride 8

Thread

IDs

Thread

IDs

Thread

IDs

New Problem: Shared Memory Bank Conflicts

Performance for 4M element reduction

Shader 1:
interleaved addressing

with divergent branching
8.054 ms 2.083 GB/s

Shader 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

0 1 2 3 4 ... 31 32 33 34 35 ...

0 1 2 3 4 ... 31 0 1 2 3 ...

Address:

Bank:

Thread Group Shared Memory Bank Conflicts

 32 banks example (each address is 32-bits)

 Banks are arranged linearly with addresses:

 TGSM addresses that are 32 DWORD apart use the same bank

 Accessing those addresses from multiple threads will create a bank conflict

 Declare TGSM 2D arrays as MyArray[Y][X], and increment X first, then Y

– Essential if X is a multiple of 32!

 Padding arrays/structures to avoid bank conflicts can help

– E.g. MyArray[16][33] instead of [16][32]

Parallel Reduction: Sequential Addressing

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Shared Memory

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

Thread

IDs
Step 1

Stride 8

Step 2

Stride 4

Step 3

Stride 2

Step 4

Stride 1

Thread

IDs

Thread

IDs

Thread

IDs

Sequential addressing is conflict free

for (unsigned int s=1; s < groupDim_x; s *= 2) {

int index = 2 * s * tid;

if (index < groupDim_x) {

sdata[index] += sdata[index + s];

}

GroupMemoryBarrierWithGroupSync();

}

for (unsigned int s=groupDim_x/2; s>0; s>>=1) {

if (tid < s) {

sdata[tid] += sdata[tid + s];

}

GroupMemoryBarrierWithGroupSync();

}

Reduction #3: Sequential Addressing
Replace strided indexing in inner loop:

With reversed loop and threadID-based indexing:

Performance for 4M element reduction

Shader 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Shader 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Shader 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

for (unsigned int s=groupDim_x/2; s>0; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid + s];
}
GroupMemoryBarrierWithGroupSync();

}

Idle Threads

Problem:

Half of the threads are idle on first loop iteration!

This is wasteful…

// each thread loads one element from global to shared mem

unsigned int tid = threadIdx.x;

unsigned int i = groupIdx.x*groupDim_x + threadIdx.x;

sdata[tid] = g_idata[i];

GroupMemoryBarrierWithGroupSync();

// perform first level of reduction,

// reading from global memory, writing to shared memory

unsigned int tid = threadIdx.x;

unsigned int i = groupIdx.x*(groupDim_x*2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+groupDim_x];

GroupMemoryBarrierWithGroupSync();

Reduction #4: First Add During Load

Halve the number of groups, and replace single load:

With two loads and first add of the reduction:

Performance for 4M element reduction

Shader 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Shader 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Shader 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Shader 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Step

SpeedupBandwidthTime (222 ints)

Cumulative

Speedup

Instruction Bottleneck

 At 17 GB/s, we’re far from bandwidth bound

— And we know reduction has low arithmetic intensity

 Therefore a likely bottleneck is instruction overhead

— Ancillary instructions that are not loads, stores, or arithmetic

for the core computation

— In other words: address arithmetic and loop overhead

 Strategy: unroll loops

Unrolling the Last Warp

 As reduction proceeds, # ―active‖ threads decreases

— When s <= 32, we have only one warp left

 Instructions are SIMD synchronous within a warp

 That means when s <= 32:

— We don’t need a barrier() call

— We don’t need ―if (tid < s)‖ because it doesn’t save any work

 Let’s unroll the last 6 iterations of the inner loop

for (unsigned int s=groupDim_x/2; s>32; s>>=1)

{

if (tid < s)

sdata[tid] += sdata[tid + s];

GroupMemoryBarrierWithGroupSync();

}

if (tid < 32)

{

sdata[tid] += sdata[tid + 32];

sdata[tid] += sdata[tid + 16];

sdata[tid] += sdata[tid + 8];

sdata[tid] += sdata[tid + 4];

sdata[tid] += sdata[tid + 2];

sdata[tid] += sdata[tid + 1];

}

Reduction #5: Unroll the Last Warp

Note: This saves useless

work in all warps, not

just the last one!

Without unrolling, all warps

execute every iteration of

the for loop and if

statement

Performance for 4M element reduction

Shader 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Shader 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Shader 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Shader 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Shader 5:
unroll last warp

0.536 ms 31.289 GB/s 1.8x 15.01x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

Complete Unrolling

 Assuming we know the number of iterations at compile

time, we could completely unroll the reduction

— Luckily, the block size is limited by the GPU to 512 threads

— Also, we are sticking to power-of-2 block sizes

 So we can easily unroll for a fixed block size

Reduction #6: Completely Unrolled
#define groupDim_x …

if (groupDim_x >= 512) {

if (tid < 256) { sdata[tid] += sdata[tid + 256]; } GroupMemoryBarrierWithGroupSync();

}

if (groupDim_x >= 256) {

if (tid < 128) { sdata[tid] += sdata[tid + 128]; } GroupMemoryBarrierWithGroupSync();

}

if (groupDim_x >= 128) {

if (tid < 64) { sdata[tid] += sdata[tid + 64]; } GroupMemoryBarrierWithGroupSync();

}

if (tid < 32) {

if (groupDim_x >= 64) sdata[tid] += sdata[tid + 32];

if (groupDim_x >= 32) sdata[tid] += sdata[tid + 16];

if (groupDim_x >= 16) sdata[tid] += sdata[tid + 8];

if (groupDim_x >= 8) sdata[tid] += sdata[tid + 4];

if (groupDim_x >= 4) sdata[tid] += sdata[tid + 2];

if (groupDim_x >= 2) sdata[tid] += sdata[tid + 1];

}

Performance for 4M element reduction

Shader 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Shader 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Shader 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Shader 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Shader 5:
unroll last warp

0.536 ms 31.289 GB/s 1.8x 15.01x

Shader 6:
completely unrolled

0.381 ms 43.996 GB/s 1.41x 21.16x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

unsigned int tid = threadIdx.x;

unsigned int i = groupIdx.x*(groupDim_x*2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+groupDim_x];

GroupMemoryBarrierWithGroupSync();

Reduction #7: Multiple Adds / Thread
Replace load and add of two elements:

With a while loop to add as many as necessary:

unsigned int tid = threadIdx.x;

unsigned int i = groupIdx.x*(groupDim*2) + threadIdx.x;

unsigned int dispatchSize = groupDim *2*gridDim.x;

sdata[tid] = 0;

while (i < n) {

sdata[tid] += g_idata[i] + g_idata[i+groupDim_x];

i += dispatchSize;

}

GroupMemoryBarrierWithGroupSync();

unsigned int tid = threadIdx.x;

unsigned int i = groupIdx.x*(groupDim_x*2) + threadIdx.x;

sdata[tid] = g_idata[i] + g_idata[i+groupDim_x];

GroupMemoryBarrierWithGroupSync();

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

With a while loop to add as many as necessary:

unsigned int tid = threadIdx.x;

unsigned int i = groupIdx.x*(groupDim_x*2) + threadIdx.x;

unsigned int dispatchSize = groupDim_x*2*gridDim.x;

sdata[tid] = 0;

while (i < n) {

sdata[tid] += g_idata[i] + g_idata[i+groupDim_x];

i += dispatchSize;

}

GroupMemoryBarrierWithGroupSync();

Note: dispatchSize loop stride

to maintain coalescing!

Performance for 4M element reduction

Shader 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Shader 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Shader 3:
sequential addressing

1.722 ms 9.741 GB/s 2.01x 4.68x

Shader 4:
first add during global load

0.965 ms 17.377 GB/s 1.78x 8.34x

Shader 5:
unroll last warp

0.536 ms 31.289 GB/s 1.8x 15.01x

Shader 6:
completely unrolled

0.381 ms 43.996 GB/s 1.41x 21.16x

Shader 7:
multiple elements per thread

0.268 ms 62.671 GB/s 1.42x 30.04x

Shader 7 on 32M elements: 73 GB/s!

Step

SpeedupBandwidthTime (222 ints)

Cumulative

Speedup

Final Optimized Compute Shader

Cbuffer consts {
uint n;
uint dispatchDim_x;

};
groupshared float sdata[groupDim_x];
[numthreads(groupDim_x, 1, 1)]
void reduce6(uint tid : SV_GroupIndex,

uint3 groupIdx : groupID)
{

unsigned int i = groupIdx.x*(groupDim_x*2) + tid;
unsigned int dispatchSize = groupDim_x*2*dispatchDim_x;
sdata[tid] = 0;

do { sdata[tid] += g_idata[i] + g_idata[i+groupDim_x]; i += dispatchSize; } while (i < n);
GroupMemoryBarrierWithGroupSync();

if (groupDim_x >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } GroupMemoryBarrierWithGroupSync(); }
if (groupDim_x >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } GroupMemoryBarrierWithGroupSync(); }
if (groupDim_x >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } GroupMemoryBarrierWithGroupSync(); }

if (tid < 32) {
if (groupDim_x >= 64) sdata[tid] += sdata[tid + 32];
if (groupDim_x >= 32) sdata[tid] += sdata[tid + 16];
if (groupDim_x >= 16) sdata[tid] += sdata[tid + 8];
if (groupDim_x >= 8) sdata[tid] += sdata[tid + 4];
if (groupDim_x >= 4) sdata[tid] += sdata[tid + 2];
if (groupDim_x >= 2) sdata[tid] += sdata[tid + 1];

}
if (tid == 0) g_odata[groupIdx.x] = sdata[0];

}

Performance Comparison

0.01

0.1

1

10

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

Elements

T
im

e
(m

s)
1: Interleaved Addressing:

Divergent Branches

2: Interleaved Addressing:

Bank Conflicts

3: Sequential Addressing

4: First add during global

load

5: Unroll last warp

6: Completely unroll

7: Multiple elements per

thread (max 64 blocks)

Questions?

 Eric Young

— eyoung@nvidia.com

Extra Slides

Multi-GPU

 Multiple GPUs can be used in a single system for task or data
parallel GPU processing

 Host explicitly manages I/O and workload for each GPU

 Choose the best split to minimize inter-GPU communication
(must occur via host memory)

CPU

CS “A” CS “B” CS “Z”

CS “A” CS “A” CS “A”

Task Parallel

Data Parallel

Inter-GPU communication

occurs via host CPU

PCI-E

GPU GPU GPU

…

Memory Coalescing (Matrix Multiply)

Each iteration, threads access the same element in A.

Un-coalesced in CC <= 1.1.

Matrix Multiplication (cont.)

Optimization GeForce

GTX 280

GeForce

GTX 8800

No optimization
8.8 GBps 0.7 GBps

Coalesced using local

memory to store a tile

of A
14.3 GBps 8.2 GBps

Using thread group

shared memory to

eliminate redundant

reads of a tile of B
29.7 GBps 15.7 GBps

Matrix Multiplication (cont.)

Optimization GeForce

GTX 280

GeForce

GTX 8800

No optimization
8.8 GBps 0.7 GBps

Coalesced using local

memory to store a tile

of A
14.3 GBps 8.2 GBps

Using thread group

shared memory to

eliminate redundant

reads of a tile of B
29.7 GBps 15.7 GBps

