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Image-Based Effects are Great!



Beautiful, But Costly

• Workload differs greatly from 3D rendering

• Bandwidth-hungry shaders

• Algorithms shoe-horned into Graphics API

Direct3D 11 provides great ways around this



New Resource Types

• Buffers / Structured Buffers

• Unordered Access Views (UAV)

– RWTexture/RWBuffer

– Allows arbitrary reads and writes from PS and CS

• Ability to “scatter” provides new opportunities

• Have to be aware of hazards and access patterns



New Intrinsic Operations

• Interlocked/Append operations

– Allow parallel workloads to combine results easily

– Useful for collapsing information across the image

– Not free! Cost increases if a value is hit often
• NV: This may be more efficient from Compute shaders

• NV: Append is more efficient than IncrementCounter for 
dynamically growing UAVs

• AMD: No special cases for performance



DirectCompute

• New shader mode that operates on arbitrary threads

• Frees processing from restrictions of gfx pipeline

• Full access to conventional Direct3D resources



DIRECTCOMPUTE REVIEW



Why use Compute?

• Allows much finer-level control of workload

• Inter-thread communication

• Hardware has more freedom for optimizations

• Just plain easier to write!



Threads, Groups, and Dispatches

• Shaders run as a set of several thread blocks 
that execute in parallel

– “Threads” runs the code given in the shader

– “Groups” are sets of threads that can 
communicate using on-chip memory

– “Dispatches” are sets of groups



Dispatch Example

// HLSL Code

RWTexture<float3> uavOut : register(u0);

[numthreads(8,8,1)]

void SimpleCS(uint3 tID : 

SV_DispatchThreadID) 

{

uavOut[tID] = float3(0,1,0);

}

// CPU Code

pContext->CSSetUnorderedAccessViews(

0, 1, &pOutputUAV, NULL);

pContext->CSSetShader(pSimpleCS);

pContext->Dispatch(4,4,1);



DispatchIndirect

• Fetch Dispatch parameters from device buffer 
instead of from the CPU

• Let Compute work drive Compute!

– Still bound by CPU to issue DispatchIndirect call

• Great when combined with Append buffers for 
dynamic workload generation



Memory Hierarchy

Memory Space Speed Visibility

Global Memory
(Buffers, Textures, Constants)

Longest Latency All Threads

Shared Memory
(groupshared)

Fast Single Group

Local Memory
(Registers)

Very Fast Single Thread



Inter-Thread Communication

• Threads in a group can communicate via shared mem

• Thread execution cannot depend on other groups!

– Not all groups execute simultaneously

– Groups can execute in any order within a Dispatch

– Inter-group dependency could lead to deadlocks

• If a group relies on results from another group, split 
shader into multiple dispatches



Data Hazards and Stalls

• Re-binding a resource used as UAV may stall 
HW to avoid data hazards

– Have to make sure all writes complete so they are 
visible to next dispatch

– Driver may re-order unrelated Dispatch calls to 
hide this latency



Context Switch Overhead

• Have to be aware of context switch cost

– Penalty switching between Graphics and Compute

– Usually minimal unless repeatedly hit

– Back-to-Back Dispatches avoid this, so group calls



OPTIMIZATION CONCEPTS



Common Pitfalls
Memory Limited

• Inefficient access pattern

• Inefficient formats

• Just too much data!

Computation Limited

• Divergent threads

• Bad Instruction Mix

• Poor Hardware Utilization



Memory Architecture

• D3D11 introduces complex memory systems

• Caching behavior depends on access mode

– Buffers may hit cache better for linear accesses

– Textures work better for less predictable/more 2D access 
within a group



Stratified Sampling
Bad – Poor Sample Locality Good – Better for Cache
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“Going with the Grain”
Buffer<float> srvInput;

[numthreads(128,1,1)]

void ReadCS(

uint3 gID : SV_GroupID

uint3 tID : SV_DispatchThreadID)

{

float val;

// Good: Reading along pitch

val = srvRead[128*gID.x+tID.x];

// ... Use data ...

// Bad: Reading against pitch

val = srvRead[128*tID.x+gID.x];

// ... Use data ...

}

• Unlike textures, 
buffers are linear 
memory

• Be sure to read along 
the pitch of a 2D array 
mapped to a buffer 
where possible!



Divergence

• Theoretically, threads execute independantly

• Practically, they execute in parallel wavefronts
– Threads are “masked” for instructions in untaken branches 

while wavefront executes

– Different wavefronts can diverge without cost

– Wavefronts size is hardware specific 

• NV:32 AMD:64



Wavefront Divergence
// Assume WAVE_SIZE = wavefront size for

// the hardware (NV:32,AMD:64)

[numthreads(WAVE_SIZE,2,1)]

void DivergeCS(uint3 tID : 

SV_DispatchThreadID) {

float val;

// Divergent

if (tID.x%2)

val = ComplexFuncA(tID);

else

val = ComplexFuncB(tID);

// Not divergent

if (tID.y%2)

val =+ ComplexFuncC(tID);

else

val =+ ComplexFuncD(tID);

Output(tID, val);

}

0% Idle

50% Idle

50% Idle

0% Idle

0% Idle



Divergent Pixels
• In PS, threads are grouped 

into 2D clusters of samples

• Branches are OK if they’re 
coherent across the image
– Especially if it saves work!

Bad Divergence

OK 

Divergence



Utilization

• Create enough work to saturate hardware
– Dozens of groups is about the sweet spot

• Maximize number of threads per group
– Need enough to hide latency in the hardware

– 256-512 is a good target

• Experiment with Shared memory usage
– More shared memory = fewer groups/processor

– Try making groups smaller when shared memory/thread increases



Group-Level Coordination

• Compute threads can communicate and share 
data via “groupshared” memory

– Pre-load data used by every thread in a group
• Unpacked values, Dynamic programming

• Save bandwidth and computation

– Share workload for common tasks
• Compute the sum/max/etc of a set

• More efficient than shared atomics



Pre-Loading into Shared Memory
Separable Convolution:

• Read entire footprint of 
kernel into shared memory

• Fetch values from shared 
buffer and multiply by 
kernel for each pixel

• Read less often, and more 
efficiently!

Group FootprintKernel Width

First Load Second Load

Kernel Width



Naïve Sum
Buffer<float> srvIn;

groupshared float sSum;

[numthreads(GROUP_SIZE,1,1)]

void SimpleSumCS(…)

{

if (gtID.x == 0)

{

sSum = 0;

for(int t=1; t<8; ++t)

{

sSums += srvIn[tID+t];

}

}

GroupMemoryBarrierWithGroupSync();

// Use total

}

…

Most threads idle!

Atomics are no better



Parallel Sum
Buffer<float> srvIn;

groupshared float sSums[GROUP_SIZE];

[numthreads(GROUP_SIZE,1,1)]

void ParallelSumCS(…)

{

sSums[gtID.x] = srvIn[tID];

GroupMemoryBarrierWithGroupSync();

for(int t=GROUP_SIZE/2; t>0; t=t>>1)

{

if (gtID.x < t)

sSums[gtID.x] += sSums[gtId.x+t];

GroupMemoryBarrier();

}

// Use result; total is in sSums[0]

} O(N) ops, but in parallel!



Parallel Prefix Sum
Buffer<float> srvIn;

groupshared float sSums[GROUP_SIZE];

[numthreads(GROUP_SIZE,1,1)]

void ParallelSumCS(…)

{

sSums[gtID.x] = srvIn[tID];

GroupMemoryBarrierWithGroupSync();

for(int t=1; t>GROUP_SIZE; t=t<<1)

{

if (gtID.x >= t)

sSums[gtID.x] += sSums[gtId.x-t];

GroupMemoryBarrier();

}

// Use results

// sSums[N] = total of samples [0…N]

}



CASE STUDIES



Case Study: Summed Area Table



SAT Approach
• Create texture where each 

value is the sum of all pixels 
before it in the image

• Sample corners of region 
and use difference to 
compute average value

(X1,Y1)

(X2,Y2)

S(X2,Y2)-S(X2,Y1)-S(X1,Y2)+S(X1,Y1)

((X2-X1)*(Y2-Y1))

Avg =



SAT Sampling
• Overlap multiple regions to 

better approximate filters

float3 BetterFilter(float2 center, float fSize)

{

float3 value = float3(0,0,0);

value += BoxFilter(center, 0.5*fSize, fSize);

value += BoxFilter(center, fSize, 0.5*fSize);

value += BoxFilter(center, 0.75*fSize, 0.75*fSize);

value /= 3; // to account for overlap

return value;

}



SAT Advantages

• Great technique blurring with varying kernels

– Constant work per sample, regardless of kernel

– Applications: DOF, sampling environment maps

• A textbook case for parallel prefix sum!



SAT Computation
Step 1: Sum Subsections

• Dispatch groups that sum 
segments of each row



SAT Computation
Step 2: Offset Segments

• Sum the last element of 
every group prior to this in 
parallel

• Add the total to each px in 
the row segment

• Output to new buffer, 
transposing coords



SAT Computation
Step 3: Repeat 1 (for columns) Step 4: Repeat 2, transpose



Segment Sum Shader

1. Fetch values for the pixels 
covered by the group to shared 
memory

2. Perform a parallel prefix sum

3. Output results 

#define GROUP_SIZE 16

#define WARP_SIZE 32

Texture2D<float3>   texInput : register(t0);

RWTexture2D<float3> texOutput : register(u0);

groupshared float3 sSums[WARP_SIZE*GROUP_SIZE];

[numthreads( WARP_SIZE, GROUP_SIZE, 1 )]

void SumSegments_CS(uint3 groupID : SV_GroupID, uint3 threadID : 

SV_GroupThreadID, uint3 dispatchID : SV_DispatchThreadID)

{

uint2 pixelID = uint2(dispatchID.x, dispatchID.y);

// 1. Fetch Values

sSums[threadID.x + threadID.y*WARP_SIZE] = texInput[pixelID];

GroupMemoryBarrierWithGroupSync();

// 2. Parallel Prefix-Sum

for (int t=1; t<WARP_SIZE; t=t*2) {

if (threadID.x >= t) {

sSums[threadID.x+threadID.y*WARP_SIZE] += sSums[(threadID.x-

t)+threadID.y*WARP_SIZE];

}

GroupMemoryBarrierWithGroupSync();

}

// 3. Output Results

texOutput[pixelID] = sSums[threadID.x + threadID.y*WARP_SIZE];

}



Segment Offset Shader

1. Fetch the totals of all previous 
segments

2. Perform a parallel sum of the 
segment totals

3. Add the final total to the value of 
each pixel in the segment to 
offset it, and transpose the 
coordinates for the next pass

In practice, do 1-2 multiple times 
based on image width (not shown 
for brevity)

#define GROUP_SIZE 16

#define WARP_SIZE 32

Texture2D<float3>   texInput : register(t0);

RWTexture2D<float3> texOutput : register(u0);

groupshared float3 sOffsets[WARP_SIZE*GROUP_SIZE];

[numthreads( WARP_SIZE, GROUP_SIZE, 1 )]

void OffsetSegments_CS(uint3 groupID : SV_GroupID, uint3 threadID : 

SV_GroupThreadID, uint3 dispatchID : SV_DispatchThreadID) 

{

uint2 pixelID = uint2(dispatchID.x, dispatchID.y);

// 1. Fetch the totals of previous segments

if (threadID.x < groupID.x)

sOffsets[threadID.y*WARP_SIZE + threadID.x] =

texInput[uint2((threadID.x+1)*WARP_SIZE-1, pixelID.y)];

else

sOffsets[threadID.y*WARP_SIZE + threadID.x] = float3(0,0,0);

GroupMemoryBarrierWithGroupSync();

// 2. Parallel Sum

for (int t=WARP_SIZE/2; t>0; t=t/2) {

if (threadID.x < t)

sOffsets[threadID.y*WARP_SIZE + threadID.x] += 

sOffsets[threadID.y*WARP_SIZE + threadID.x+t];

GroupMemoryBarrierWithGroupSync();

}

// 3. Output

texOutput[uint2(pixelID.y, pixelID.x)] = 

sOffsets[threadID.y*WARP_SIZE] + texInput[pixelID];

}



SAT Depth of Field

Filter Size

SAT

Scene



Case Study: Scattered Bokeh



Scattered Bokeh
• “Hot-Spots” make up most 

of the visual impact

• Sparse samples can be 
computed more efficiently 
with a scattered approach



Hot-Spot UAV

Scattered Bokeh
1: Gather Hot-Spots
• Identify pixels over threshold

• Append positions to UAV

Append



Scattered Bokeh
1: Gather Hot-Spots

2: Expand Samples
• Render buffer as point data

• Use GS to expand based on CoC

Hot-Spot UAV

GS



Scattered Bokeh
1: Gather Hot-Spots

2: Expand Samples

3: Accumulate Splats
• Mask quads with Bokeh pattern

• Accumulate masked splats

• Opt: To save fill rate, use a 
pyramid of textures and assign 
splats based on size



Scattered Bokeh
1: Gather Hot-Spots

2: Expand Samples

3: Accumulate Splats

4: Combine Results
• Splat straight to DOF’d image

• OR blend DOF with splat pyramid



Conventional DOF



DOF with Bokeh



QUESTIONS?


