

High Performance
Post-Processing

Nathan Hoobler, NVIDIA

(nhoobler@nvidia.com)

Image-Based Effects are Great!

Beautiful, But Costly

• Workload differs greatly from 3D rendering

• Bandwidth-hungry shaders

• Algorithms shoe-horned into Graphics API

Direct3D 11 provides great ways around this

New Resource Types

• Buffers / Structured Buffers

• Unordered Access Views (UAV)

– RWTexture/RWBuffer

– Allows arbitrary reads and writes from PS and CS

• Ability to “scatter” provides new opportunities

• Have to be aware of hazards and access patterns

New Intrinsic Operations

• Interlocked/Append operations

– Allow parallel workloads to combine results easily

– Useful for collapsing information across the image

– Not free! Cost increases if a value is hit often
• NV: This may be more efficient from Compute shaders

• NV: Append is more efficient than IncrementCounter for
dynamically growing UAVs

• AMD: No special cases for performance

DirectCompute

• New shader mode that operates on arbitrary threads

• Frees processing from restrictions of gfx pipeline

• Full access to conventional Direct3D resources

DIRECTCOMPUTE REVIEW

Why use Compute?

• Allows much finer-level control of workload

• Inter-thread communication

• Hardware has more freedom for optimizations

• Just plain easier to write!

Threads, Groups, and Dispatches

• Shaders run as a set of several thread blocks
that execute in parallel

– “Threads” runs the code given in the shader

– “Groups” are sets of threads that can
communicate using on-chip memory

– “Dispatches” are sets of groups

Dispatch Example

// HLSL Code

RWTexture<float3> uavOut : register(u0);

[numthreads(8,8,1)]

void SimpleCS(uint3 tID :

SV_DispatchThreadID)

{

uavOut[tID] = float3(0,1,0);

}

// CPU Code

pContext->CSSetUnorderedAccessViews(

0, 1, &pOutputUAV, NULL);

pContext->CSSetShader(pSimpleCS);

pContext->Dispatch(4,4,1);

DispatchIndirect

• Fetch Dispatch parameters from device buffer
instead of from the CPU

• Let Compute work drive Compute!

– Still bound by CPU to issue DispatchIndirect call

• Great when combined with Append buffers for
dynamic workload generation

Memory Hierarchy

Memory Space Speed Visibility

Global Memory
(Buffers, Textures, Constants)

Longest Latency All Threads

Shared Memory
(groupshared)

Fast Single Group

Local Memory
(Registers)

Very Fast Single Thread

Inter-Thread Communication

• Threads in a group can communicate via shared mem

• Thread execution cannot depend on other groups!

– Not all groups execute simultaneously

– Groups can execute in any order within a Dispatch

– Inter-group dependency could lead to deadlocks

• If a group relies on results from another group, split
shader into multiple dispatches

Data Hazards and Stalls

• Re-binding a resource used as UAV may stall
HW to avoid data hazards

– Have to make sure all writes complete so they are
visible to next dispatch

– Driver may re-order unrelated Dispatch calls to
hide this latency

Context Switch Overhead

• Have to be aware of context switch cost

– Penalty switching between Graphics and Compute

– Usually minimal unless repeatedly hit

– Back-to-Back Dispatches avoid this, so group calls

OPTIMIZATION CONCEPTS

Common Pitfalls
Memory Limited

• Inefficient access pattern

• Inefficient formats

• Just too much data!

Computation Limited

• Divergent threads

• Bad Instruction Mix

• Poor Hardware Utilization

Memory Architecture

• D3D11 introduces complex memory systems

• Caching behavior depends on access mode

– Buffers may hit cache better for linear accesses

– Textures work better for less predictable/more 2D access
within a group

Stratified Sampling
Bad – Poor Sample Locality Good – Better for Cache

1

1

1

1

2

2

2
2

3

3

3
3

4
4

4

4

1

1 1

1

2
2

2
2

3

3

3
3

44

4

4

“Going with the Grain”
Buffer<float> srvInput;

[numthreads(128,1,1)]

void ReadCS(

uint3 gID : SV_GroupID

uint3 tID : SV_DispatchThreadID)

{

float val;

// Good: Reading along pitch

val = srvRead[128*gID.x+tID.x];

// ... Use data ...

// Bad: Reading against pitch

val = srvRead[128*tID.x+gID.x];

// ... Use data ...

}

• Unlike textures,
buffers are linear
memory

• Be sure to read along
the pitch of a 2D array
mapped to a buffer
where possible!

Divergence

• Theoretically, threads execute independantly

• Practically, they execute in parallel wavefronts
– Threads are “masked” for instructions in untaken branches

while wavefront executes

– Different wavefronts can diverge without cost

– Wavefronts size is hardware specific

• NV:32 AMD:64

Wavefront Divergence
// Assume WAVE_SIZE = wavefront size for

// the hardware (NV:32,AMD:64)

[numthreads(WAVE_SIZE,2,1)]

void DivergeCS(uint3 tID :

SV_DispatchThreadID) {

float val;

// Divergent

if (tID.x%2)

val = ComplexFuncA(tID);

else

val = ComplexFuncB(tID);

// Not divergent

if (tID.y%2)

val =+ ComplexFuncC(tID);

else

val =+ ComplexFuncD(tID);

Output(tID, val);

}

0% Idle

50% Idle

50% Idle

0% Idle

0% Idle

Divergent Pixels
• In PS, threads are grouped

into 2D clusters of samples

• Branches are OK if they’re
coherent across the image
– Especially if it saves work!

Bad Divergence

OK

Divergence

Utilization

• Create enough work to saturate hardware
– Dozens of groups is about the sweet spot

• Maximize number of threads per group
– Need enough to hide latency in the hardware

– 256-512 is a good target

• Experiment with Shared memory usage
– More shared memory = fewer groups/processor

– Try making groups smaller when shared memory/thread increases

Group-Level Coordination

• Compute threads can communicate and share
data via “groupshared” memory

– Pre-load data used by every thread in a group
• Unpacked values, Dynamic programming

• Save bandwidth and computation

– Share workload for common tasks
• Compute the sum/max/etc of a set

• More efficient than shared atomics

Pre-Loading into Shared Memory
Separable Convolution:

• Read entire footprint of
kernel into shared memory

• Fetch values from shared
buffer and multiply by
kernel for each pixel

• Read less often, and more
efficiently!

Group FootprintKernel Width

First Load Second Load

Kernel Width

Naïve Sum
Buffer<float> srvIn;

groupshared float sSum;

[numthreads(GROUP_SIZE,1,1)]

void SimpleSumCS(…)

{

if (gtID.x == 0)

{

sSum = 0;

for(int t=1; t<8; ++t)

{

sSums += srvIn[tID+t];

}

}

GroupMemoryBarrierWithGroupSync();

// Use total

}

…

Most threads idle!

Atomics are no better

Parallel Sum
Buffer<float> srvIn;

groupshared float sSums[GROUP_SIZE];

[numthreads(GROUP_SIZE,1,1)]

void ParallelSumCS(…)

{

sSums[gtID.x] = srvIn[tID];

GroupMemoryBarrierWithGroupSync();

for(int t=GROUP_SIZE/2; t>0; t=t>>1)

{

if (gtID.x < t)

sSums[gtID.x] += sSums[gtId.x+t];

GroupMemoryBarrier();

}

// Use result; total is in sSums[0]

} O(N) ops, but in parallel!

Parallel Prefix Sum
Buffer<float> srvIn;

groupshared float sSums[GROUP_SIZE];

[numthreads(GROUP_SIZE,1,1)]

void ParallelSumCS(…)

{

sSums[gtID.x] = srvIn[tID];

GroupMemoryBarrierWithGroupSync();

for(int t=1; t>GROUP_SIZE; t=t<<1)

{

if (gtID.x >= t)

sSums[gtID.x] += sSums[gtId.x-t];

GroupMemoryBarrier();

}

// Use results

// sSums[N] = total of samples [0…N]

}

CASE STUDIES

Case Study: Summed Area Table

SAT Approach
• Create texture where each

value is the sum of all pixels
before it in the image

• Sample corners of region
and use difference to
compute average value

(X1,Y1)

(X2,Y2)

S(X2,Y2)-S(X2,Y1)-S(X1,Y2)+S(X1,Y1)

((X2-X1)*(Y2-Y1))

Avg =

SAT Sampling
• Overlap multiple regions to

better approximate filters

float3 BetterFilter(float2 center, float fSize)

{

float3 value = float3(0,0,0);

value += BoxFilter(center, 0.5*fSize, fSize);

value += BoxFilter(center, fSize, 0.5*fSize);

value += BoxFilter(center, 0.75*fSize, 0.75*fSize);

value /= 3; // to account for overlap

return value;

}

SAT Advantages

• Great technique blurring with varying kernels

– Constant work per sample, regardless of kernel

– Applications: DOF, sampling environment maps

• A textbook case for parallel prefix sum!

SAT Computation
Step 1: Sum Subsections

• Dispatch groups that sum
segments of each row

SAT Computation
Step 2: Offset Segments

• Sum the last element of
every group prior to this in
parallel

• Add the total to each px in
the row segment

• Output to new buffer,
transposing coords

SAT Computation
Step 3: Repeat 1 (for columns) Step 4: Repeat 2, transpose

Segment Sum Shader

1. Fetch values for the pixels
covered by the group to shared
memory

2. Perform a parallel prefix sum

3. Output results

#define GROUP_SIZE 16

#define WARP_SIZE 32

Texture2D<float3> texInput : register(t0);

RWTexture2D<float3> texOutput : register(u0);

groupshared float3 sSums[WARP_SIZE*GROUP_SIZE];

[numthreads(WARP_SIZE, GROUP_SIZE, 1)]

void SumSegments_CS(uint3 groupID : SV_GroupID, uint3 threadID :

SV_GroupThreadID, uint3 dispatchID : SV_DispatchThreadID)

{

uint2 pixelID = uint2(dispatchID.x, dispatchID.y);

// 1. Fetch Values

sSums[threadID.x + threadID.y*WARP_SIZE] = texInput[pixelID];

GroupMemoryBarrierWithGroupSync();

// 2. Parallel Prefix-Sum

for (int t=1; t<WARP_SIZE; t=t*2) {

if (threadID.x >= t) {

sSums[threadID.x+threadID.y*WARP_SIZE] += sSums[(threadID.x-

t)+threadID.y*WARP_SIZE];

}

GroupMemoryBarrierWithGroupSync();

}

// 3. Output Results

texOutput[pixelID] = sSums[threadID.x + threadID.y*WARP_SIZE];

}

Segment Offset Shader

1. Fetch the totals of all previous
segments

2. Perform a parallel sum of the
segment totals

3. Add the final total to the value of
each pixel in the segment to
offset it, and transpose the
coordinates for the next pass

In practice, do 1-2 multiple times
based on image width (not shown
for brevity)

#define GROUP_SIZE 16

#define WARP_SIZE 32

Texture2D<float3> texInput : register(t0);

RWTexture2D<float3> texOutput : register(u0);

groupshared float3 sOffsets[WARP_SIZE*GROUP_SIZE];

[numthreads(WARP_SIZE, GROUP_SIZE, 1)]

void OffsetSegments_CS(uint3 groupID : SV_GroupID, uint3 threadID :

SV_GroupThreadID, uint3 dispatchID : SV_DispatchThreadID)

{

uint2 pixelID = uint2(dispatchID.x, dispatchID.y);

// 1. Fetch the totals of previous segments

if (threadID.x < groupID.x)

sOffsets[threadID.y*WARP_SIZE + threadID.x] =

texInput[uint2((threadID.x+1)*WARP_SIZE-1, pixelID.y)];

else

sOffsets[threadID.y*WARP_SIZE + threadID.x] = float3(0,0,0);

GroupMemoryBarrierWithGroupSync();

// 2. Parallel Sum

for (int t=WARP_SIZE/2; t>0; t=t/2) {

if (threadID.x < t)

sOffsets[threadID.y*WARP_SIZE + threadID.x] +=

sOffsets[threadID.y*WARP_SIZE + threadID.x+t];

GroupMemoryBarrierWithGroupSync();

}

// 3. Output

texOutput[uint2(pixelID.y, pixelID.x)] =

sOffsets[threadID.y*WARP_SIZE] + texInput[pixelID];

}

SAT Depth of Field

Filter Size

SAT

Scene

Case Study: Scattered Bokeh

Scattered Bokeh
• “Hot-Spots” make up most

of the visual impact

• Sparse samples can be
computed more efficiently
with a scattered approach

Hot-Spot UAV

Scattered Bokeh
1: Gather Hot-Spots
• Identify pixels over threshold

• Append positions to UAV

Append

Scattered Bokeh
1: Gather Hot-Spots

2: Expand Samples
• Render buffer as point data

• Use GS to expand based on CoC

Hot-Spot UAV

GS

Scattered Bokeh
1: Gather Hot-Spots

2: Expand Samples

3: Accumulate Splats
• Mask quads with Bokeh pattern

• Accumulate masked splats

• Opt: To save fill rate, use a
pyramid of textures and assign
splats based on size

Scattered Bokeh
1: Gather Hot-Spots

2: Expand Samples

3: Accumulate Splats

4: Combine Results
• Splat straight to DOF’d image

• OR blend DOF with splat pyramid

Conventional DOF

DOF with Bokeh

QUESTIONS?

