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Abstract

We describe the design of high-performance parallel
radix sort and merge sort routines for manycore GPUs, tak-
ing advantage of the full programmability offered by CUDA.
Our radix sort is the fastest GPU sort reported in the liter-
ature, and is up to 4 times faster than the graphics-based
GPUSort. It is also highly competitive with CPU imple-
mentations, being up to 3.5 times faster than comparable
routines on an 8-core 2.33 GHz Intel Core2 Xeon system.
Our merge sort is the fastest published comparison-based
GPU sort and is also competitive with multi-core routines.

To achieve this performance, we carefully design our al-
gorithms to expose substantial fine-grained parallelism and
decompose the computation into independent tasks that per-
form minimal global communication. We exploit the high-
speed on-chip shared memory provided by NVIDIA’s Tesla
architecture and efficient data-parallel primitives, particu-
larly parallel scan. While targeted at GPUs, these algo-
rithms should also be well-suited for other manycore pro-
Cessors.

1. Introduction

Sorting is a computational building block of fundamental
importance and is one of the most widely studied algorith-
mic problems. Many algorithms rely on the availability of
efficient sorting routines as a basis for their own efficiency.
Sorting itself is of central importance in applications rang-
ing from database systems to computer graphics, and many
other algorithms can be conveniently phrased in terms of
sorting. It is therefore important to provide efficient sorting
routines on practically any programming platform, and as
computer architectures evolve there is a continuing need to
explore efficient sorting techniques on emerging architec-
tures.

One of the dominant trends in microprocessor architec-
ture in recent years has been continually increasing chip-
level parallelism. Multicore CPUs—providing 2—4 scalar
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cores, typically augmented with vector units—are now
commonplace and there is every indication that the trend
towards increasing parallelism will continue on towards
“manycore” chips that provide far higher degrees of par-
allelism. GPUs have been at the leading edge of this drive
towards increased chip-level parallelism for some time and
are already fundamentally manycore processors. Current
NVIDIA GPUgs, for example, contain up to 128 scalar pro-
cessing elements per chip [19], and in contrast to earlier
generations of GPUs, they can be programmed directly in
C using CUDA [20, 21].

In this paper, we describe the design of efficient sort-
ing algorithms for such manycore GPUs using CUDA. The
programming flexibility provided by CUDA and the current
generation of GPUs allows us to consider a much broader
range of algorithmic choices than were convenient on past
generations of GPUs. We specifically focus on two classes
of sorting algorithms: a radix sort that directly manipulates
the binary representation of keys and a merge sort that re-
quires only a comparison function on keys.

The GPU is a massively multi-threaded processor which
can support, and indeed expects, several thousand concur-
rent threads. Exposing large amounts of fine-grained par-
allelism is critical for efficient algorithm design on such
architectures. In radix sort, we exploit the inherent fine-
grained parallelism of the algorithm by building our algo-
rithm upon efficient parallel scan operations [3]. We ex-
pose fine-grained parallelism in merge sort by developing
an algorithm for pairwise parallel merging of sorted se-
quences, adapting schemes for parallel splitting [12] and
binary search [4] previously described in the literature. We
demonstrate how to impose a block-wise structure on the
sorting algorithms, allowing us to exploit the fast on-chip
memory provided by the GPU architecture. We also use
this on-chip memory for locally ordering data to improve
coherence, thus resulting in substantially better bandwidth
utilization for the scatter steps used by radix sort.

Our experimental results demonstrate that our radix
sort algorithm is faster than all previously published GPU
sorting techniques when running on current-generation
NVIDIA GPUs. It is also highly competitive with multi-
core CPU implementations, being on average 2—2.5 times



and up to 3.5 times faster than comparable routines on an
8-core 2.33 GHz Intel Core2 Xeon system. Our tests fur-
ther demonstrate that our merge sort algorithm is the fastest
comparison-based GPU sort algorithm described in the lit-
erature, and is faster in several cases than other GPU-based
radix sort implementations. And like our radix sort, its per-
formance compares quite favorably with a reference CPU
implementation running on an 8-core system.

2. Related Work

The study of sorting techniques has a long history and
countless algorithmic variants have been developed [18, 5].
Many important classes of algorithms rely on sort or sort-
like primitives. Database systems make extensive use of
sorting operations [9]. The construction of spatial data
structures that are essential in computer graphics and ge-
ographic information systems is fundamentally a sorting
process. Efficient sort routines are also a useful building
block in implementing algorithms like sparse matrix mul-
tiplication and parallel programming patterns like MapRe-
duce [7, 14].

Parallel Sorting. The importance of sorting has lead to
the design of efficient sorting algorithms for a variety of
parallel architectures [1]. One notable vein of research in
this area has been on parallel sorting networks, of which
the most frequently used is Batcher’s bitonic sorting net-
work [2]. Sorting networks are inherently parallel as they
are formalized in terms of physically parallel comparator
devices. Algorithms based on sorting networks are particu-
larly attractive on platforms where data-dependent branch-
ing is expensive or impossible, since the “interconnections”
between comparisons are fixed regardless of the input.

Another common approach to parallel sorting is to par-
tition the input sequence into pieces that can be sorted in-
dependently by the available processors. The sorted sub-
sequences must then be merged to produce the final result.
A handful of efficient parallel merge techniques have been
developed, including those which use elements of one se-
quence to break up both into contiguous runs of the out-
put [12] and those which use parallel binary search [4].

Data-parallel techniques developed for the PRAM model
and its variants are also of particular relevance to us. Blel-
loch [3] describes how radix sort and quicksort can be im-
plemented using parallel scan and segmented scan prim-
itives, respectively. Such techniques often translate well
to vector machines, as demonstrated by Zagha and Blel-
loch [24], and are a good fit for the GPU as well.

Sorting on GPUs. Most previous attempts at designing
sorting algorithms for the GPU have been made using the

graphics API and the pixel shader programs that it pro-
vides. This is a highly constrained execution environment
where, among other restrictions, scatter operations are not
allowed and all memory regions are either read-only or
write-only. Because of these restrictions, the most success-
ful GPU sorting routines implemented via the graphics API
have been based on bitonic sort [17]. The GPUSort sys-
tem developed by Govindaraju et al. [8] is one of the best
performing graphics-based sorts, although it suffers from
the O(nlog®n) work complexity typical of bitonic meth-
ods. Grell and Zachmann [11] improve the complexity of
their GPU-ABiSort system to O(nlogn) by using an adap-
tive data structure that enables merges to be done in linear
time and also demonstrate that this improves the measured
performance of the system as well.

Modern GPUs, supported by the CUDA software en-
vironment, provide much greater flexibility to explore a
broader range of parallel algorithms. Harris et al. [13]
and Sengupta et al. [22] developed efficient implementa-
tions of scan and segmented scan data-parallel primitives,
using these to implement both radix sort and quicksort.
Le Grand [10] proposed a radix sort algorithm using a
larger radix and per-processor histograms to improve per-
formance. He et al. [15] used a similar strategy to re-
duce scattering in their Most Significant Digit (MSD) radix
sort implementation. These radix sort algorithms have been
some of the fastest GPU sorting systems.

3. Parallel Computing on the GPU

Before discussing the design of our sorting algorithms,
we briefly review the salient details of NVIDIA’s current
GPU architecture and the CUDA parallel programming
model. The specific architectural details provided apply to
G8x and G9x series GPUs.

Current NVIDIA GPUs are manycore chips built around
an array of parallel processors [19]. A block diagram of
a representative chip is shown in Figure 1. When running
graphics applications, these processors execute the shader
programs that have become the main building blocks for
most rendering algorithms. With NVIDIA’s CUDA soft-
ware environment, developers may also execute programs
on these parallel processors directly.

In the CUDA programming model [20, 21], an applica-
tion is organized into a sequential host program and one
or more parallel kernels that can be executed by the host
program on a parallel device. Typically, the host program
executes on the CPU and the parallel kernels execute on the
GPU, although CUDA kernels may also be compiled for ef-
ficient execution on multi-core CPUs [23].

A kernel executes a scalar sequential program across a
set of parallel threads. The programmer organizes these
threads into thread blocks; a kernel thus consists of a grid of
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Figure 1. Block diagram of a G80 GPU with 128
scalar SP proceesors, organized in 16 SM mul-
tiprocessors, interconnected with 6 DRAM mem-
ory partitions.

one or more blocks. A thread block is a group of concurrent
threads that can cooperate amongst themselves through bar-
rier synchronization and a per-block shared memory space
private to that block. When launching a kernel, the pro-
grammer specifies both the number of blocks and the num-
ber of threads per block to be created when lauching the
kernel.

Thread blocks are executed on an array of SM multi-
threaded multiprocessors, each of which consists of 8§ SP
scalar processors and is capable of executing up to 768 si-
multaneous concurrent threads. NVIDIA’s current products
range from 1 SM at the low end to 16 SMs at the high end.
All thread management, including creation and schedul-
ing, is performed entirely in hardware. The SM schedules
threads to run from its pool of active blocks with zero over-
head and provides for lightweight barrier synchronization
costing only 1 instruction.

When designing algorithms in CUDA, it is fairly natu-
ral to think of a thread block as the rough equivalent of
a CRCW PRAM of bounded size and requiring explicit
barrier synchronization in place of synchronous execution.
Since global synchronization can only be achieved via the
barrier implicit between successive kernel calls, the need for
global synchronization drives the decomposition of parallel
algorithms into separate kernels.

To efficiently manage its large thread population, the
Tesla SM employs a SIMT (single instruction, multiple
thread) architecture [19, 20]. Threads are executed in
groups of 32 called warps. The threads of a warp are ex-
ecuted on separate scalar (SP) processors which share a
single multithreaded instruction unit. The SM transpar-
ently manages any divergence in the execution of threads
in a warp. This SIMT architecture allows the hardware

to achieve substantial efficiencies while executing non-
divergent data-parallel codes.

The SIMT execution of threads is largely transparent to
the CUDA programmer. However, much like cache line
sizes on traditional CPUs, it can be ignored when design-
ing for correctness, but must be carefully considered when
designing for peak performance. To achieve best efficiency,
kernels should avoid execution divergence, where threads
within a warp follow different execution paths. Diver-
gence between warps, however, introduces no performance
penalty.

Each SM is equipped with a 16KB on-chip scratchpad
memory that provides a private per-block shared memory
space to CUDA kernels. This shared memory has very low
access latency and high bandwidth, similar to an L1 cache.
Along with the SM’s lightweight barriers, this memory is
an essential ingredient for efficient cooperation and com-
munication amongst threads in a block. It is particularly
advantageous when a thread block can load a block of data
into on-chip shared memory, process it there, and then write
the final result back out to external memory.

The threads of a warp are free to load from and store to
any valid address, thus supporting general gather and scatter
access to memory. However, when threads of a warp access
consecutive words in memory, the hardware is able to co-
alesce these accesses into aggregate transactions with the
memory system, resulting in substantially higher memory
throughput. On current architectures, a warp of 32 threads
performing a gather will issue 32 requests to memory, while
a warp reading 32 consecutive words will issue 2 requests.

Finally, the GPU relies on multithreading, as opposed
to a cache, to hide the latency of transactions with exter-
nal memory. It is therefore necessary to design algorithms
that create enough parallel work to keep the machine fully
utilized. For current-generation hardware, a minimum of
around 5,000 threads must be live simultaneously to effi-
ciently utilize the entire chip.

4. Radix Sort

Radix sort is one of the oldest and best-known sorting al-
gorithms and is often amongst the most efficient for sorting
small keys. Radix sort algorithms assume that the keys are
represented as d-digit numbers in a radix-r notation. On bi-
nary computers, it is natural to assume that the radix r = 2°
and that the keys are an integral multiple of b bits in length.
The sorting algorithm itself consists of d passes which con-
sider the i-th digits of the keys in order from least to most
significant digit. In each pass, the input sequence is sorted
with respect to digit i of the keys, with the requirement that
this sort be stable (i.e., it preserves the relative ordering of
keys with equal digits).

The sorting algorithm used within each pass of radix sort



is typically a counting sort or bucket sort [5]. In a single
pass, each key can be placed into one of r buckets. To
compute the output index at which the element should be
written—which we will refer to as the rank of the element—
we must simply count the number of elements in lower
numbered buckets plus the number of elements already in
the current bucket. Having computed the rank of each el-
ement, we complete the sorting step by scattering the ele-
ments into the output array in the location determined by
their ranks.

4.1. Parallelizing Radix Sort

There is substantial potential parallelism in the counting
sort used for each pass of radix sort. In the simplest case,
we examine 1 bit of the keys in each pass. The computation
of the rank of each element can then be performed with a
single parallel prefix sum, or scan, operation. Scans are a
fundamental data-parallel primitive with many uses [3] and
which can be implemented efficiently on manycore proces-
sors like the GPU [22]. This approach to radix sort was
described by Blelloch [3]—who described the counting sort
based on 1-bit keys as a “split” operation—and has been im-
plemented in CUDA by Harris et al. [13]. An implementa-
tion is publicly available as part of the CUDA Data-Parallel
Primitives (CUDPP) library [6].

This approach to implementing radix sort is conceptu-
ally quite simple. Given scan and permute primitives, it is
straightforward to implement. However, it is not particu-
larly efficient when the arrays are in external DRAM. For
32-bit keys, it will perform 32 scatter operations that re-
order the entire sequence being sorted. Transferring data
to/from external memory is relatively expensive on modern
processors, so we would prefer to avoid this level of data
movement if possible.

One natural way to reduce the number of scatter oper-
ations is to increase the radix r. Instead of considering 1
bit of the keys at a time, we can consider b bits at a time.
This requires a bucket sort with 2° buckets in each phase
of the radix sort. To perform bucket sort in parallel, Za-
gha and Blelloch [24] divide the input sequence into blocks
and use separate bucket histograms for each block. Sep-
arate blocks are processed by different processors, and the
per-processor histograms are stored in such a way that a sin-
gle scan operation gives the offsets of each bucket in each
block. This enables each block to read off its set of offsets
for each bucket in the third step and compute global offsets
in parallel. Le Grand [10] and He et al. [15] have imple-
mented similar schemes in CUDA.

While more efficient, we have found that this scheme
also makes inefficient use of external memory bandwidth.
The higher radix requires fewer scatters to global memory.
However, it still performs scatters where consecutive ele-

ments in the sequence may be written to very different lo-
cations in memory. This sacrifices the bandwidth improve-
ment available due to coalesced writes, which in practice
can be as high as a factor of 10.

4.2. Our Radix Sort Algorithm

Our approach to parallel radix sort in CUDA is also
based on dividing the sequence into blocks that can be pro-
cessed by independent processors. We focus specifically
on making efficient use of memory bandwidth by (1) min-
imizing the number of scatters to global memory and (2)
maximizing the coherence of scatters. Data blocking and
a radix r > 2 accomplishes the first goal. We accomplish
the second goal by using on-chip shared memory to locally
sort data blocks by the current radix-» digit. This converts
scattered writes to external memory into scattered writes to
on-chip memory, which is roughly 2 orders of magnitude
faster.

By sorting the elements locally before computing offsets
and performing the scatter, we ensure that elements with
the same key within a block are present in consecutive on-
chip memory locations. Because the sort is stable, elements
with the same key that are consecutive within a block will
go to consecutive global memory locations as well. This
means that in the final scatter operation, we expect to find
significant coalescing, as illustrated in Figure 4. In fact,
we only expect one discontinuity in final global memory
locations per bucket. By a judicious choice of r = 2%, we
can ensure that almost all writes are coalesced.

We implement each pass of the radix sort for the i-th least
significant digit using four separate CUDA kernels.

1. Sort each block in on-chip memory according to the
i-th digit using the split primitive (see Figure 2).

2. Compute offsets for each of the r buckets, storing them
to global memory in column-major order (see Fig-
ure 3).

3. Perform a prefix sum over this table.

4. Compute the output location for each element using
the prefix sum results and scatter the elements to their
computed locations (Figure 4).

When sorting each block locally, we assume the current
radix-r digit is a b-bit integer. We can therefore sort using
b passes of the split operator shown in Figure 2. Re-
call that in CUDA, we specify the action of a single scalar
thread of the thread block. Here, each thread processes one
element of the sequence, receiving the current bit (true or
false) of its element’s key as argument pred to split.
From the call to scan, each thread obtains the number of
threads with lower IDs that have a true predicate. From this



__device__ unsigned int split (bool pred, unsigned int blocksize)

{

// (1) Count ’True’ predicates held by lower—-numbered threads

unsigned int true_before = scan(pred);

// (2) Last thread calculates total number of ’‘False’ predicates

__shared__ unsigned int false_total;
if (threadIdx.x == blocksize - 1)
false_total = blocksize - (true_before + pred)

syncthreads () ;

// (3) Compute and return the ’rank’ for this thread

if( pred )

return true_before - 1 + false_total;

else return threadIdx.x - true_before;

Figure 2. CUDA code for the split primitive used in block-level radix sort.

value, and the total number of true predicates, each thread
can compute the rank (i.e., output location) of its elements.
After b successive split and permute passes, we will have
sorted all the elements of the block by the current radix-r
digit.

The choice of b is determined by two competing factors.
A large b leads to too many buckets present per block, and
hence too many distinct global memory offsets where ele-
ments in each block need to be scattered, decreasing the co-
herence of the scatter. On the other hand, a small b leads to
a large number of passes, each of which performs a scatter
in global memory. Given the ratio of coalesced to uncoa-
lesced memory access times on current GPU hardware, we
have found b = 4 provides a balance between these factors.

Buckets

0o 1 2 6 oo 15

Blocks

N/256

Figure 3. Per-block histogram table for computing
global bucket offsets with a single scan.

The second step of our algorithm computes the number
of elements in each of the 2° buckets for each sorted block,
as well as the offset of each bucket relative to the beginning
of the block. The offsets are computed by finding the loca-
tions where the radix digit of an element differs from that

of its neighbor. The bucket sizes are then obtained by tak-
ing the difference between adjacent bucket offsets. These
are written into per-block bucket histograms as shown in
Figure 3. If this table is stored in column-major order, we
can obtain the global offsets for each bucket by simply per-
forming a prefix sum operation on this table [24]. We use
the efficient scan implementation provided by the CUDPP
library [6].

Finally, for each element in each sorted block, we add
its local offset within the block and the offset of its radix
bucket in the output array to obtain the element’s offset in
the output array. We then write this element to the computed
offset in the output array. Adjacent elements with the same
radix digit in the sorted block will go to consecutive global
memory locations. There are at most 2° distinct disconti-
nuities in these global indices per block. Therefore global
memory scatters are fairly well coalesced.

Our CUDA kernels are executed by 256-thread blocks.
While assigning one element per thread is a natural design
decision, handling a larger number of elements per thread is
actually more efficient. We process four elements per thread
or 1024 elements per block. Performing more independent
serial work in each thread improves overall parallel work
efficiency and provides more opportunities to hide latency.

The rules for memory coalescing on current GPU archi-
tectures are another important performance consideration.
To coalesce a load or store, threads in a warp must address
sequential words in memory, and the first thread’s address
must be aligned to 32 times the word size accessed per
thread. In the scatter stage of the radix sort, it is possible for
threads within a warp to write to different buckets, and thus
not consecutive offsets. In fact, we expect this to be a com-
mon occurance, since we have 16 buckets and 256 threads
per block, and thus an average of 16 threads per bucket. On
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Figure 4. Scatter memory access patterns in our efficient radix sort implementation. The scattering to global
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the current architecture, this would prevent coalescing for
almost every warp. In order to improve the performance
of the code, we separate the accesses to different buckets in
the same warp by iterating over the bucket boundaries in the
warp. In each iteration the threads of each warp write out
values belonging to only one bucket. This leads to complete
coalescing of writes to global memory, but requires more it-
erations and more instructions than a simple uncoalesced
write. This optimization could be unnecessary if future ar-
chitectures provide more aggressive hardware coalescing.

5. Merge Sort

Since direct manipulation of keys as in radix sort is
not always feasible, it is important to provide efficient
comparison-based sorting algorithms as well. Merge sort is
a divide-and-conquer algorithm that divides the input into
many blocks, sorts each independently, and then merges the
sorted blocks into the final sorted array. In addition to sort-
ing as such, the merge procedure used by merge sort is often
useful on its own. It can, for instance, be used for efficient
online sorting, where additional elements may need to be
added to an existing sorted list.

5.1. Parallelizing Merge Sort

The sorting of independent blocks of data is obviously
parallel, and can be accomplished using any block-level
sorting approach, including bitonic sort, radix sort [13], or
quicksort [22]. Regardless of the choice of block-level sort,
the main bottleneck is almost always the merging step [22].

Merging k blocks can be done in logk parallel steps using a
tree of pairwise merges (see Figure 5).

BIock Block Block Block Block Block Block Block
‘ Block Block Block Block ‘
Mergesort
Passes \/
Block Block
0 1
Block
0

Figure 5. Tree-like pattern of merging blocks in
mergesort. The number of blocks decreases and
the size of each block increases as we go down
the tree.

Each level of the merge tree involves the inherently
parallel merge of independent pairs of blocks; however,
the number of pairs to be merged decreases geometrically.
This coarse-grained parallelism is insufficient to fully uti-
lize massively parallel architectures. Our primary focus in
designing our merge sort algorithm is therefore on expos-
ing sufficient fine-grained parallelism within the pairwise
merging of sorted blocks.



Bitonic merge [2] is one of the most commonly used par-
allel merging algorithms, but produces a work-inefficient
O(nlog*n) sorting algorithm. Merge sorts operating on
fully sorted arrays perform the asymptotically efficient
O(nlogn) work, although we must still be careful that the
constants involved do not make the merge slow in practice.
One efficient algorithm for merging sorted blocks, proposed
by Hagerup et al. [12], is based on partitioning the two se-
quences being merged using the “ranks” of a sorted array
of splitting values. Here the “rank” of an array element
is simply the number of values in the array less than or
equal to the given element. The two sequences to be merged
are partitioned using the same splitting values, so that each
sub-block has a corresponding sub-block in the opposing
sequence. These corresponding sub-blocks are merged in-
dependently. Hagerup et al. merge sub-blocks sequentially.
Chen et al. [4] describe a parallel merging technique based
on binary search. These algorithms promise to be able to
efficiently merge sorted sequences in parallel without com-
plicated data structures.

5.2. Our Merge Sort Algorithm

Our merge sort system follows the pattern outlined
above. We split the input data into k blocks, sort each block
in parallel, and then perform logk steps of pairwise merg-
ing (Figure 5) to produce the sorted output. We split the se-
quence into blocks sized to fit in the GPU’s on-chip shared
memory. For sorting individual blocks, we use a bitonic sort
since it is quite efficient for small data sizes; we cannot use
radix sort as our goal is to build a comparison-based sort.

As discussed above, the key to the merge sort algorithm
is in developing an efficient merge algorithm. In particu-
lar, it is important to expose substantial fine-grained paral-
lelism at all levels, rather than simply relying on the coarse-
grained parallelism between merging of independent block
pairs. Ideally, merging time should depend only on the to-
tal number of elements being merged and not on how these
elements are divided into blocks. Such an algorithm would
achieve consistent speedups at different levels of the merge
tree and would be as efficient at merging the last level as
the first. To expose sufficient fine-grained parallelism, we
partition blocks into sub-blocks that can be merged inde-
pendently (following Hagerup et al. [12]) and use parallel
binary search to merge these sub-blocks (following Chen et
al. [4]).

At any given level of the merge tree, we will need to
merge b sorted blocks which together contain all n input
elements. Since we merge pairs of blocks independently, we
must simply focus on a single even/odd block pair. Consider
any element e drawn from one of the blocks. If we compute
the ranks ry,r; of e in the even and odd blocks, we can split
them as shown in Figure 6. We divide the even block into its

Block 0 Block 1
A e B C D
01.\ nry 01.. r2r2+/1/...
<e >e <e >e
Merge Merge

A+C B +D

<e >e

Figure 6. A two-way split of blocks based on a
single element position in merge sort.

first r; elements A and the remainder B, and divide the odd
block into its first r, elements C and remainder D. Because
we know that all elements in A, C are < ¢ and all elements in
B, D are > e, we can now merge the sub-block pairs A, C and
B, D independently, concatenating the results to produce the
final merged block.

This only increases the available parallelism by a factor
of 2. In general, we need to split each pair of blocks into
multiple pieces, rather than just 2, which can be merged in
parallel. We do this by sampling multiple elements with
which to split the blocks. Computing the ranks of all sam-
ple elements in the even/odd pair of blocks will allow us
to split the blocks into many sub-blocks: elements smaller
than all the samples, those larger than just the first sam-
ple, those larger than just the first two samples, and so on.
The number of sub-blocks created will be one more than
the number of sample elements, and the sub-blocks may be
merged independently and concatenated in a generalization
of the process shown in Figure 6.

The algorithm for partitioning a block into multiple parts
requires careful design to ensure that it is easy to find the
ranks of each sample in both the blocks. We use every 256th
element of each of the two blocks as a sample, guarantee-
ing that all sub-blocks have at most 256 elements. This en-
sures that we can merge sub-blocks in the GPU’s fast on-
chip shared memory, which is crucial because memory is
accessed fairly randomly by the sub-block merge.

Once we select the samples, we compute their ranks in
both of the even/odd blocks being merged. The rank of a
sample in the block to which it belongs is trivially given by
its index, leaving only its rank in the other block to be com-
puted. To facilitate this computation, we first merge the two
sequences of sorted samples. As an example, consider Fig-
ure 7. We pick elements 0 and 20 from block 0 and elements
10 and 50 from block 1 as the samples. In step 1, we merge
these four samples into the sequence {0,10,20,50}. In our
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Figure 7. Splitting blocks in mergesort based on multiple input elements.

implementation, we merge samples by invoking our main
merge procedure. Since the number of samples involved is
small, this step takes negligible time.

Once we have the rank of each sample in the merged
sample array, it is easy to compute the rank of that sample
in the array of samples for the other block. It is precisely
the difference between the rank of the sample in the merged
sample array and its rank in its own sample array (which is
already known). For example, in Figure 7, the rank of sam-
ple 20 in the samples for block 0 is 2. Since its rank in the
merged sample list is 3, its rank in the samples for block 1
is 3—2 = 1. This defines a narrow range of elements on
which we perform a parallel binary search to compute the
rank in the actual sub-block. In Figure 7, we computed the
rank of sample 20 in the sample array of block 1 to be 1.
This means that sample 20 is smaller than all other samples
of block 1 except one (namely, element 10). We conclude
that sample 20 has to lie somewhere in the first 256 ele-
ments of block 1, since if not the second sample of block
1 would also be less than 20. We can always find such a
256-element range for each sample. We can then perform
a parallel binary search using one thread per sample, each
thread performing a binary search over the elements of its
256-element range to find the rank. This binary search is
done in the global memory of the GPU and involves irreg-
ular memory access patterns. Howver, there are just a few
threads (only one per sample) and each thread only needs
to do log, 256 = 8 irregular lookups for a binary search on
256 elements. Thus this step takes only a small fraction of
the total execution time. Figure 7 shows the 256-element
ranges for the samples and the resulting ranks.

The ranks of the samples define the sub-blocks of the
odd and even blocks. Sub-blocks within a block can be nat-
urally ordered according to the values of the elements they
contain — the sub-block with the smallest elements is given
the lowest number. In Figure 7, the sub-blocks are:

Sub-block # | Block 0 Block 1
Elements | Elements
1 0 -
2 1-2 0
3 3-257 1-4
4 257-310 | 5-257

There are two interesting facts to note about the sub-
blocks we generate. The first is that we create one sub-block
per every 256 elements in each block to be merged. As a
consequence, every level of the merge tree will result in the
same number of sub-blocks (i.e., n/256), leading to equal
parallelism at all levels. The second interesting fact is that
each sub-block of a block has at most 256 elements. This
is guaranteed by the fact that no more than 256 elements in
any block can lie in between two consective samples of just
that block — the advantage of choosing our samples as we
do. We additionally split each block on the basis of sam-
ples in the other block, but this can only decrease the size
of each sub-block. This guarantees that each sub-block fits
into the on-chip shared memory in the following sub-block
merge step.

The final step is to merge—in parallel—corresponding
sub-blocks together and concatenate the results together.



We do this using another parallel binary search, comput-
ing the rank of each element in the output merged array and
then scattering values to their correct positions. The key
property we exploit is that the rank of any element in the
merged array is the sum of the ranks of the element in the
two sub-blocks being merged. The rank of an element in its
own sub-block is simply its index, since the sub-block is al-
ready sorted, and we compute its rank in the other sub-block
via binary search. We use a straightforward implementa-
tion where each element is assigned its own thread, which
performs a binary search over all elements of the other ar-
ray to find the rank of its assigned element. In the scatter
step, each thread writes out its element to the correct posi-
tion. This algorithm will typically result in very irregular
memory access patterns, both in the course of the parallel
binary search and in the final scatter stage. As opposed to
the earlier binary search when computing the ranks of each
sample, this binary search performs many more irregular
memory loads—there is one thread per element rather than
just one per sample. This could easily be a major bottle-
neck. It is therefore cruicial to perform this binary search in
fast on-chip shared memory. Since we have guaranteed that
no sub-block can be larger than 256 elements, we are guar-
anteed that we can fit each sub-block into shared memory.

6. Experimental Results

We now examine the experimental performance of our
sorting algorithms, focusing on comparisons with prior
GPU sorting techniques and comparable multi-core CPU
sorting techniques. Our performance tests are all based on
sorting sequences of key-value pairs where both keys and
values are 32-bit words. In brief, our experimental results
demonstrate that, on current hardware, our radix sort is the
fastest GPU sorting routine reported in the literature and
that it is on average 2-2.5 times and up to 3.5 times faster
than a comparable 8-core Intel Clovertown system. Our
merge sort is the fastest published GPU sorting routine and
is also competitive with the 8-core CPU routines as well.

We report GPU times as execution time only and do not
include the cost of transferring input data from the host CPU
memory across the PCle bus to the GPU’s on-board mem-
ory. Sorting is frequently most important as one building
block of a larger-scale computation. In such cases, the data
to be sorted is being generated by a kernel on the GPU and
the resulting sorted array will be consumed by a kernel on
the GPU. Even in cases where the sort itself is the entire
computation, we note that the sorting rate of our radix sort is
roughly 0.5 GB/s. Since PCle bandwidth is roughly 4 GB/s
and the data transfer can be overlapped with the execution
of other kernels, PCle data transfer is clearly not a bottle-
neck and the execution time for sort gives the clearest pic-
ture of overall sorting throughput.

6.1. Comparing GPU-based Methods.

We begin by examining the performance of several GPU
sorting implementations. All GPU performance data were
collected on an NVIDIA GeForce 8800 Ultra running in a
PC with a 2.13 GHz Intel Core2 6400 CPU, 2GB of main
memory, and using a Linux 2.6.9 kernel.

Figure 8 shows the sorting rate of several GPU algo-
rithms for different input sizes. We compute sorting rates
by dividing the input size by total running time, and thus
measure the number of key-value pairs sorted per second.
The input arrays are randomly generated sequences whose
lengths range from 1K elements to 16M elements, only half
of which are power-of-2 sizes.

The graph shows the performance of both our sorting
routines, as well as the radix sort published in GPU Gems
3 by Le Grand [10], the radix sort algorithm implemented
by Sengupta et al. [22] in CUDPP [6], and the bitonic
sort system GPUSort of Govindaraju et al. [8]. GPU-
Sort is an example of traditional graphics-based GPGPU
programming techniques; all computation is done in pixel
shaders via the OpenGL API. Note that GPUSort only han-
dles power-of-2 input sizes on the GPU, performing post-
processing on the CPU for arrays of other sizes. There-
fore, we only measure GPUSort performance on power-of-2
sized sequences, since only these reflect actual GPU perfor-
mance. GPU-ABiSort [11]—another well-known graphics-
based GPU sort routine—does not run correctly on current
generation GPUs. However, it was previously measured to
be about 5% faster than GPUSort on a GeForce 7800 sys-
tem. Therefore, we believe that the GPUSort performance
on the GeForce 8800 should be representative of the GPU-
ABiSort performance as well. All other sorts shown are
implemented in CUDA.

Several trends are apparent in this graph. First of all, the
CUDA-based sorts are generally substantially faster than
GPUSort. This is in part due to the intrinsic advantages
of CUDA. Directly programming the GPU via CUDA im-
poses less overhead than the graphics API and exposes ar-
chitectural features such as load/store to memory and the
on-chip shared memory which are not available to graphics
programs like GPUSort. Furthermore, the bitonic sort used
by GPUSort does O(nlog?n) work, as opposed to the more
work-efficient O(n) radix sort algorithms and our O(nlogn)
merge sort algorithm.

Our results clearly show that our radix sort code deliv-
ers substantially higher performance than all the other sort-
ing algorithms tested. It is faster across all input sizes and
the relative performance gap increases for larger inputs. At
the largest input sizes, it can sort at 2 times the rate of all
other algorithms and at nearly 4 times the GPUSort rate.
The algorithm suggested by Le Grand [10] is competitive
at array sizes up to 1M elements, at which point it’s sort-
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Figure 8. Sorting rates (elements sorted per second) for several GPU algorithms.

ing rate degrades substantially. This shows the importance
of the block-level sorting we perform to improve scatter co-
herence. Based on the numbers reported by He et al. [15],
their sorting performance is roughly on par with the CUDPP
sort, making our radix sort roughly twice as fast.

The results also show that our merge sort is more ef-
ficient than all other algorithms at large input sizes, with
the exception of our radix sort routine. Even at small in-
put sizes, it is roughly twice as fast as GPUSort, which is
the only other comparison-based sort, and is similarly faster
than the CUDPP radix sort.

Finally, we examine the breakdown of execution times of
our radix and merge sort in Figure 9. Of the three main steps
in our radix sort algorithm, sorting each block in shared
memory takes about 60% of the time. The scatter step,
which is usually the bottleneck in radix sort algorithms,
takes up only 30% of the total time. This demonstrates the
efficacy of our method for improving the coherence of scat-
tering. Block-level computation, rather than scattering to
memory, is the bulk of the execution time. Since compu-
tation speed is more likely to scale with successive gener-
ations of hardware, our algorithmic approach should scale
very well along with it. For merge sort, we see that block-
wise merging in shared memory takes roughly 60% of the
time. Again, since this is computation taking place within
individual processors, rather than communicating with ex-
ternal DRAM, the performance of this algorithm should
scale very well with increasingly powerful processor cores.
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Figure 9. Breakdown of execution time for our
sorting algorithms.

6.2. Comparing CPU-based Methods.

For CPU performance testing, we used an 8-core
2.33 GHz Intel Core2 Xeon E5345 system, whose archi-
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Figure 10. Diagram of the 8-core “Clovertown” In-
tel Xeon system used in CPU performance tests.

tecture is outlined in Figure 10. The CPU cores are dis-
tributed between two physical sockets. Each socket con-
tains a multi-chip module with twin Core2 chips, and each
chip has a 4MB L2 cache. This gives a total of 8-cores and
16MB of L2 cache between all cores. This system runs a
64-bit Linux 2.6.18 kernel.

Our baseline CPU sorting code is the
tbb::parallel_sort () routine provided by In-
tel’s Threading Building Blocks (TBB) [16] running across
8 threads. This is an implementation of quicksort. We
also implemented our own efficient radix sort algorithm
using TBB for parallelization. Finally, we tested a carefully
hand-tuned radix sort implementation that uses SSE2
vector instructions and a custom Pthreads parallelization
layer.

The results of our experiments are shown in Figure 11.
This graph shows sorting rate performance for our two GPU
sorting algorithms as well as the 3 CPU sorting implemen-
tations mentioned above. As we can see, the algorithms
developed in this paper are very competitive with the CPU
implementations. Our radix sort produces the fastest run-
ning times for all sequences of 8K-elements and larger. It is
on average 2.6 times faster than tbb: :parallel_sort
for input sizes larger than 8K-elements. For the same
size range, it is roughly 2 times faster than both our
TBB radix sort and the hand-tuned SIMD radix sort.
For the two comparison-based sorts—our merge sort and
tbb::parallel_sort—our merge sort is faster for all
inputs of 16K-elements and larger. Our merge sort is also
competitive with the CPU radix sorts, although the relative
performance factor is quite variable depending on the input
size.

The results shown in Figure 11 demonstrate that the sort-
ing rate of the quicksort-based tbb: :parallel_sort
scales relatively smoothly over input sizes, whereas the
CPU radix sort performance is much more variable. We
believe that this is caused by the more local nature of quick-
sort. After the first few partitioning steps, each core can be
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operating on a reasonably local set of data that will fit in its
L2 cache. Radix sort, on the other hand, performs a number
of global permutation steps and therefore can expect less
locality. Figure 12 provides further evidence of this effect.
Here we plot the relative speedup factor for 2-, 4-, 6-, and
8-thread executions of the CPU sorting algorithms over a
single-threaded execution. Consistent with our expectation
that quicksort should benefit more from cache locality, we
see that the quicksort algorithm scales better from 1 core
to 8 cores. The 8-thread quicksort execution is roughly
5.5 times faster than the single thread version for large in-
put sizes, whereas the radix sort performance is less than
4 times faster than the single threaded performance. We
do not see a similar disparity between the scaling of our
radix and merge sorts in large part because the GPU relies
on multithreading rather than caching to hide the latency of
external DRAM. Because the GPU does not use a cache,
we do not experience the same performance penalty for the
scatters being performed by the radix sort.

To provide a slightly different view of performance,
Figure 13 shows the parallel speed-up achieved by both
CPU and GPU parallel sorts over a 1-thread execution of
tbb::parallel_sort. We choose a single theaded
version of parallel_sort as the base for our compar-
isons instead of a sequential algorithm like std: :sort
because this factors out the overhead that goes into con-
verting a sequential to a parallel algorithm. This makes
the scaling results a true measure of the parallel speedup
of the algorithm. We see that all of these parallel sorts pro-
vide meaningful speed-ups. Almost all algorithms start out
slower than the 8-threaded CPU parallel_sort algo-
rithm at a sequence size of 1024. However, with increas-
ing input sizes, there are more opportunities to exploit data-
level parallelism. The CPU radix sort and GPU Gems 3
radix sort both seem to suffer from performance cliffs where
their global scatters become too incoherent. For sequences
of 1M-elements and greater, our radix sort provides by far
the greatest performance boost. The GPU radix and merge
sort algorithms in this paper scale, respectively, to about 14
times and 7.3 times the single-threaded parallel_sort
performance. This is possible since modern GPUs can al-
ready execute many hundreds of parallel threads simultane-
ously.

7. Conclusion

We have presented efficient algorithms for both radix
sort and merge sort on manycore GPUs. Our experimen-
tal results demonstrate that our radix sort technique is the
fastest published sorting algorithm for modern GPU proces-
sors and is up to 4 times more efficient than techniques that
map sorting onto the graphics API. In addition to being the
fastest GPU sorting technique, it is also highly competitive
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with sorting routines on multi-core CPUs, being on aver-
age 2-2.5 times and up to 3.5 times faster than comparable
sorting routines on an 8-core CPU. Our merge sort provides
the additional flexibility of comparison-based sorting while
remaining one of the fastest sorting methods in our perfor-
mance tests.

We achieve this algorithmic efficiency by concentrating
as much work as possible in the fast on-chip memory pro-
vided by the NVIDIA Tesla architecture and by exposing
enough fine-grained parallelism to take advantage of the
1000’s of parallel threads supported by this architecture. We
believe that these key design principles also point the way
towards efficient design for manycore processors in gen-
eral. When making the transition from the coarse-grained
parallelism of multi-core chips to the fine-grained paral-
lelism of manycore chips, the structure of efficient algo-
rithms changes from a largely task-parallel structure to a
more data-parallel structure. This is reflected in our use of
data-parallel primitives in radix sort and fine-grained merg-
ing in merge sort. The exploitation of fast memory spaces—
whether implicitly cached or explicitly managed—is a also
a central theme for efficiency on modern processors. Conse-
quently, we believe that the design techniques that we have
explored in the context of GPUs will prove applicable to
other manycore processors as well.

Starting from the algorithms that we have described,
there are obviously a number of possible directions for fu-
ture work. We have focused on one particular sorting prob-
lem, namely sorting sequences of word-length key-value
pairs. Other important variants include sequences with long
keys and/or variable length keys. In such situations, an ef-
ficient sorting routine might make somewhat different ef-
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ficiency trade-offs than ours. It would also be interest-
ing to explore out-of-core variants of our algorithms which
could support sequences larger than available RAM; a nat-
ural generalization since our algorithms are already inher-
ently designed to work on small subsequences at a time in
the GPU’s on-chip memory. Finally, there are other sort-
ing algorithms whose efficient parallelization on manycore
GPUs we believe should be explored, foremost among them
being quicksort.
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