The PyTorch framework is known to be convenient and flexible, with examples covering reinforcement learning, image classification, and natural language processing as the more common use cases.
Business, Research, and Education Examples
Natural Language Processing (NLP): From Siri to Google Translate, deep neural networks have enabled breakthroughs in machine understanding of natural language. Most of these models treat language as a flat sequence of words or characters and use a kind of model called a recurrent neural network (RNN) to process this sequence. But many linguists think that language is best understood as a hierarchical tree of phrases, so a significant amount of research has gone into deep learning models known as recursive neural networks that take this structure into account. While these models are notoriously hard to implement and inefficient to run, PyTorch makes these and other complex natural language processing models a lot easier. Salesforce is using PyTorch for NLP and multi-task learning.
Research: PyTorch is a popular choice for research due to its ease of use, flexibility and rapid prototyping. Stanford University is using PyTorch’s flexibility to efficiently research new algorithmic approaches.
Education: Udacity is educating AI innovators using PyTorch.
Why PyTorch Matters to…
Data scientists
PyTorch is relatively simple to learn for programmers who are familiar with Python. It offers easy debugging, simple APIs, and compatibility with a wide range of extensions built-in Python. Its dynamic execution model is also excellent for prototyping, although it extracts some performance overhead.
Software developers
PyTorch supports a variety of features that make the deployment of the AI models quick and easy. It also has a rich ecosystem of libraries like Captum (for model interpretability), skorch (scikit-learn compatibility), etc. to support the development. PyTorch has a great ecosystem for accelerators like Glow for Training and NVIDIA®
TensorRT™ for inference.
GPUs: Key to Deep Learning
Architecturally, the CPU is composed of just a few cores with lots of cache memory that can handle a few software threads at a time. In contrast, a GPU is composed of hundreds of cores that can handle thousands of threads simultaneously.
State-of-the-art deep learning neural networks can have from millions to well over one billion parameters to adjust via back-propagation. Because neural nets are created from large numbers of identical neurons, they’re highly parallel by nature. This parallelism maps naturally to GPUs, providing a significant computation speed-up over CPU-only training. GPUs have become the platform of choice for training large, complex neural network-based systems for this reason, and the parallel nature of inference operations also lend themselves well for execution on GPUs.