NVIDIA RTX Professional Laptop GPUs

GPU Specifications Performance
Laptop GPUs NVIDIA CUDA® Processing Cores1 NVIDIA RT Cores NVIDIA Tensor Cores GPU Memory Peak Memory Bandwidth Memory Type Memory Interface TGP Max Power Consumption2 DisplayPort3 PCIe Generation NVIDIA MAX-Q Technology NVENC / NVDEC6 Single Precision Floating-Point Performance (TFLOPS,Peak)4 AI TOPS9 Tensor Performance (TFLOPS, Peak)4, 5
NVIDIA RTX 5000 Ada Generation 9,728 76 (3rd Gen) 304 (4th Gen) 16GB ECC7 576GB/s GDDR6 256-bit 80-175W 1.4a 4     42.6 682 681.8
NVIDIA RTX 4000 Ada Generation 7,424 58 (3rd Gen) 232 (4th Gen) 12GB ECC7 432GB/s GDDR6 192-bit 60-175W 1.4a 4     33.6 538 538
NVIDIA RTX 3500 Ada Generation 5,120 40 (3rd Gen) 160 (4th Gen) 12GB ECC7 432GB/s GDDR6 192-bit 60-140W 1.4a 4     23 369 368.6
NVIDIA RTX 3000 Ada Generation 4,608 36 (3rd Gen) 144 (4th Gen) 8GB ECC7 256GB/s GDDR6 128-bit 35-140W 1.4a 4     19.9 319 318.6
NVIDIA RTX 2000 Ada Generation 3,072 24 (3rd Gen) 96 (4th Gen) 8GB 256GB/s GDDR6 128-bit 35-140W 1.4a 4     14.5 232 231.6
NVIDIA RTX 1000 Ada Generation 2,560 20 (3rd Gen) 80 (4th Gen) 6GB 192GB/s GDDR6 96-bit 35-140W 1.4a 4     12.1 193 193
NVIDIA RTX 500 Ada Generation 2,048 16 (3rd Gen) 64 (4th Gen) 4GB 128GB/s GDDR6 64-bit 35-60W 1.4a 4     9.2 154 147.4
NVIDIA RTX A5500 7,424 58 (2nd Gen) 232 (3rd Gen) 16GB ECC7 512GB/s GDDR6 256-bit 80-165W 1.4a 4     24.7 396 197.8
NVIDIA RTX A4500 5,888 46 (2nd Gen) 184 (3rd Gen) 16GB ECC7 512GB/s GDDR6 256-bit 80-140W 1.4a 4     18.5 297 148.4
NVIDIA RTX A3000 12GB 4,096 32 (2nd Gen) 128 (3rd Gen) 12GB ECC7 336GB/s GDDR6 192-bit 60-130W 1.4a 4     14.1 226 113
NVIDIA RTX A2000 8GB 2,560 20 (2nd Gen) 80 (3rd Gen) 8GB 224GB/s GDDR6 128-bit 35-95W 1.4a 4     9.3 149 74.3
NVIDIA RTX A1000 6GB 2,560 20 (2nd Gen) 80 (3rd Gen) 6GB 168GB/s GDDR6 96-bit 35-95W 1.4a 4     9.3 149 74.6
NVIDIA RTX A500 2,048 16 (2nd Gen) 64 (3rd Gen) 4GB 112GB/s GDDR6 64-bit 20-60W 1.4a8 4     78 120 568

1. CUDA parallel processing cores cannot be compared between GPU generations due to several important architectural differences that exist between streaming multiprocessor designs. 2. Maximum possible power consumption including the Dynamic Boost algorithm. For system specific GPU TGP, please consult your OEM/solution provider. 3. Display support varies by system-level implementation. Check with your workstation OEM vendor for system specific configurations. Adaptors available for DVI-SL, DVI-DL, HDMI, and VGA. 4. Peak rates are based on GPU boost clock.  5. Effective TFLOPS using the sparsity feature. NVIDIA Ada Lovelace architecture using FP8 matrix multiply with FP16 or FP32 accumulate; NVIDIA Ampere architecture using FP16 matrix multiply with FP16 or FP32 accumulate. 6. Number of NVENC and NVDEC may vary by GPU. GPU specific details can be found here: https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new 7. Ensures data integrity and reliability by eliminating soft errors on direct random-access memory (DRAM) only. 8. Peak FLOP and display support for NVIDIA RTX A500 Laptop GPU varies by system configuration. Check with your OEM system vendor to confirm which specification is supported. 9. FP8 TOPS with Sparsity.