探索高保真感測器模擬技術,開發安全的自駕車技術。
模擬 / 建模 / 設計
汽車與交通
投資報酬率 風險抵減
NVIDIA Omniverse Enterprise NVIDIA OVX NVIDIA DGX
若是要開發和驗證自駕車 (AV) 安全關鍵功能,則必須進行模擬,但若要進行模擬,則必須在部署之前進行大規模測試。高保真模擬提供安全、可控且逼真的環境,可在各種情境中訓練自駕車系統。這項技術能有效模擬實際情況,讓車輛在準備上路之前能透過數位孿生技術進行安全測試和驗證。
為什麼自駕車模擬很重要:
準確地模擬各種駕駛條件,如惡劣天氣、車流變化,以及罕見或危險的情境。
使用虛擬測試,大幅減少實體測試,從而降低開發和驗證成本。
在製作實體原型之前部署虛擬車隊,為新的感測器和堆疊建立原型。
快速連結
用於自駕車模擬 (採用 OpenUSD 和 NVIDIA RTX™ 技術) 的 NVIDIA Omniverse™ Cloud API,設計旨在讓模擬開發人員能透過高保真感測器模擬、物理和逼真的行為,來強化其自駕車模擬工作流程。有了這些 API,您就可以連結由合作夥伴組成的龐大生態系統,打造出車輛動態和車流量的模擬工具。您也可以引進 USD 內容,擴展至新區域,並處理新的操作設計領域 (operational design domains, ODD)。
Sensor RTX 微服務支援自駕車上常見感測器的物理和神經渲染技術,包括鏡頭、光學雷達、雷達和超聲波感測器。經渲染的合成資料和地面實況標記可用於訓練感知模型,並在封閉迴圈測試中驗證自駕車軟體堆疊。
自駕車感測器模擬,採用 Omniverse Cloud API 技術
瞭解 Foretellix 如何運用 NVIDIA Omniverse Cloud API,為自駕車開發生成高保真感測器模擬。
善用相容模擬就緒內容的共用生態系統。
透過連結 Foretellix 的涵蓋率驅動驗證平台 Foretify™,快速擴展 Omniverse Cloud 自駕車模擬驗證及確認 (verification and validation, V&V) 功能。
透用 MathWorks RoadRunner 能將環境資料快速匯入 Omniverse Cloud。
請註冊我們的表單以獲取最新信息
Foretellix
Foretellix 是一家自動車驗證工具開發商,採用 Omniverse Cloud API 解鎖感測器模擬技術,不僅能提升安全性,同時還可加速工作流程並降低成本。
WPP
使用根據 NVIDIA Picasso 而打造的生成式人工智慧工具來製作高品質內容,並運用 NVIDIA 繪圖運算傳遞網路 (Graphics Delivery Network, GDN)來發佈互動式品牌體驗。
NVIDIA Omniverse Cloud Sensor RTX 微服務,讓您可在實際環境中測試和驗證工作流程。
NVIDIA Omniverse Cloud API 旨在提供大規模、高保真的感測器模擬技術以應對這項挑戰。
NVIDIA 在 CVPR「大規模端對端駕駛」類別中榮獲自動駕駛挑戰賽優勝,表現優於全球 400 多位參賽者。
NVIDIA 推出 Hydra-MDP 創新框架,可推動端對端自動駕駛領域的發展。
NVIDIA 研究團隊概述了一種模擬現實交通行為的新方法,支援開發人員能夠在不同交通行為的多個操作設計領域 (ODD) 中運作的系統進行開發和部署。